📄 interp1_table_mex.c
字号:
/** interp1_table_mex.c* Mex file for 1D periodic interpolation using table lookup.** forward direction: (for m = 1,...,M)* f(t_m) = \sum_{k=0}^{K-1} c_k h( (t_m - k) mod K )** The interpolator h is nonzero (and tabulated) for -J/2 <= t <= J/2.** Copyright 2004-3 Yingying Zhang and Jeff Fessler, The University of Michigan*/#include "mex.h"#include "math.h"#include "def,table.h"static void interp1_table_complex_per(const double *r_ck, /* [K1,1] in */const double *i_ck,const int K1,const double *r_h1, /* [J1*L1+1,1] in */const double *i_h1, /* imaginary part of complex interpolator */const int J1,const int L1,const double *p_tm, /* [M,1] in */const int M,double *r_fm, /* [M,1] out */double *i_fm){ int mm; const int J_shift1 = (J1 % 2) ? (J1+1)/2 : J1/2; /* nufft_offset */ /* trick: shift table pointer to center */ { const int ncenter1 = floor(J1 * L1/2); r_h1 += ncenter1; i_h1 += ncenter1; } /* interp */ for (mm=0; mm<M; mm++) { const double t1 = *p_tm++; /* put t_m in range [0,K-1] */ const double tm1 = t1 - K1 * floor(t1 / K1); int k1 = 1 + ((J1%2==1) ? ( round(tm1) - J_shift1 ) : ( floor(tm1) - J_shift1 )); register double sum1r = 0.; register double sum1i = 0.; int jj1; for (jj1=0; jj1<J1; jj1++, k1++) { const int n1 = /* ncenter1 + */ round((tm1 - k1) * L1); register double coef1r = r_h1[n1]; register double coef1i = i_h1[n1]; const int k1mod = (k1 + K1) % K1; /* complex: sum += coef * ck */ sum1r += coef1r * r_ck[k1mod] - coef1i * i_ck[k1mod]; sum1i += coef1r * i_ck[k1mod] + coef1i * r_ck[k1mod]; } *r_fm++ = sum1r; *i_fm++ = sum1i; }}static void interp1_table_real_per(const double *r_ck, /* [K,1] in */const double *i_ck,const int K1,const double *r_h1, /* [J1*L1+1,1] in (real) */const int J1,const int L1,const double *p_tm, /* [M,1] in */const int M,double *r_fm, /* [M,1] out */double *i_fm){ int mm; const int J_shift1 = (J1 % 2) ? (J1+1)/2 : J1/2; /* nufft_offset */ /* trick: shift table pointer to center */ { const int ncenter1 = floor(J1 * L1/2); r_h1 += ncenter1; } /* interp */ for (mm=0; mm<M; mm++) { const double t1 = *p_tm++; /* put t_m in range [0,K-1] */ const double tm1 = t1 - K1 * floor(t1 / K1); int k1 = 1 + ((J1%2==1) ? ( round(tm1) - J_shift1 ) : ( floor(tm1) - J_shift1 )); register double sum1r = 0.; register double sum1i = 0.; int jj1; for (jj1=0; jj1<J1; jj1++, k1++) { const int n1 = /* ncenter1 + */ round((tm1 - k1) * L1); register double coef1r = r_h1[n1]; const int k1mod = (k1 + K1) % K1; /* complex: sum += coef * ck */ sum1r += coef1r * r_ck[k1mod]; sum1i += coef1r * i_ck[k1mod]; } *r_fm++ = sum1r; *i_fm++ = sum1i; }}/** interp1_table_per_mex()*/static int interp1_table_per_mex(mxArray *plhs[],const mxArray *mx_ck,const mxArray *mx_h1,const mxArray *mx_J,const mxArray *mx_L,const mxArray *mx_tm){ const int K = mxGetM(mx_ck); /* # of DFT coefficients */ const int N = mxGetN(mx_ck); /* # of realizations */ const int M = mxGetM(mx_tm); /* # of time samples */ const int J1 = *((int *) mxGetData(mx_J)); const int L1 = *((int *) mxGetData(mx_L)); const double *r_h1 = mxGetPr(mx_h1); const double *p_tm = mxGetPr(mx_tm); const double *r_ck = mxGetPr(mx_ck); const double *i_ck = mxGetPi(mx_ck); double *r_fm, *i_fm; int nn; if (N != 1) fprintf(stderr, "Caution: multiple columns?"); Call(mxIsComplexDouble, (mx_ck)) Call(mxIsRealDouble, (mx_tm)) /* J, L, must be scalar */ if (!mxIsScalarInt32(mx_J)) Fail("J must be scalar int32") if (!mxIsScalarInt32(mx_L)) Fail("L must be scalar int32") /* check h table size */ if ((int) mxGetM(mx_h1) != J1*L1+1 || (mxGetN(mx_h1) != 1)) { fprintf(stderr, "J=%d L=%d tablelength=%d\n", J1, L1, (int) mxGetM(mx_h1)); Fail("h size problem") } if (mxGetN(mx_tm) != 1) Fail("t_m must be col vector.") /* create a new array and set the output pointer to it */ plhs[0] = mxCreateDoubleMatrix(M, N, mxCOMPLEX); r_fm = mxGetPr(plhs[0]); i_fm = mxGetPi(plhs[0]); /* call the C subroutine N times; once for each realization */ if (mxIsComplexDouble(mx_h1)) { const double *i_h1 = mxGetPi(mx_h1); for (nn=0; nn < N; ++nn) { interp1_table_complex_per(r_ck, i_ck, K, r_h1, i_h1, J1, L1, p_tm, M, r_fm, i_fm); r_ck += K; i_ck += K; r_fm += M; i_fm += M; } } else if (mxIsRealDouble(mx_h1)) { for (nn=0; nn < N; ++nn) { interp1_table_real_per(r_ck, i_ck, K, r_h1, J1, L1, p_tm, M, r_fm, i_fm); r_ck += K; i_ck += K; r_fm += M; i_fm += M; } } else Fail("h must be real or complex double (preferably real)") return 1;}/** The gateway routine.* Usage: fm = function(ck, h_table, J, L, tm)*/void mexFunction(int nlhs, mxArray *plhs[],int nrhs, const mxArray *prhs[]){ /* check for the proper number of arguments */ if (nrhs != 5 ) mexFail("5 inputs needed: (ck, h, J, L, tm)") if (nlhs > 1) mexFail("Less than one output arguments.") if (!interp1_table_per_mex(plhs, prhs[0], prhs[1], prhs[2], prhs[3], prhs[4])) mexFail("interp1_table_mex() failed") return;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -