📄 newton.m
字号:
function [p0,y0,err,P] = newton(f,df,p0,delta,epsilon,max1)
%---------------------------------------------------------------------------
%NEWTON Newton's method is used to locate a root.
% Sample calls
% [p0,y0,err] = newton('f',df,p0,delta,epsilon,max1)
% [p0,y0,err,P] = newton('f',df,p0,delta,epsilon,max1)
% Inputs
% f name of the function
% df name of the function's derivative input
% p0 starting value
% delta convergence tolerance for p0
% epsilon convergence tolerance for y0
% max1 maximum number of iterations
% Return
% p0 solution: the root
% y0 solution: the function value
% err error estimate in the solution p0
% P History vector of the iterations
%
% NUMERICAL METHODS: MATLAB Programs, (c) John H. Mathews 1995
% To accompany the text:
% NUMERICAL METHODS for Mathematics, Science and Engineering, 2nd Ed, 1992
% Prentice Hall, Englewood Cliffs, New Jersey, 07632, U.S.A.
% Prentice Hall, Inc.; USA, Canada, Mexico ISBN 0-13-624990-6
% Prentice Hall, International Editions: ISBN 0-13-625047-5
% This free software is compliments of the author.
% E-mail address: in%"mathews@fullerton.edu"
%
% Algorithm 2.5 (Newton-Raphson Iteration).
% Section 2.4, Newton-Raphson and Secant Methods, Page 84
%---------------------------------------------------------------------------
P(1) = p0;
y0 = feval(f,p0);
for k=1:max1,
df0 = feval(df,p0);
if df0 == 0,
dp = 0;
else
dp = y0/df0;
end
p1 = p0 - dp;
y1 = feval(f,p1);
err = abs(dp);
relerr = err/(abs(p1)+eps);
p0 = p1;
y0 = y1;
P = [P;p1];
if (err<delta)|(relerr<delta)|(abs(y1)<epsilon), break, end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -