📄 a1_10.m
字号:
echo on; clc;
%---------------------------------------------------------------------------
%A1_10 MATLAB script file for investigating Theorem 1.10
%
% NUMERICAL METHODS: MATLAB Programs, (c) John H. Mathews 1995
% To accompany the text:
% NUMERICAL METHODS for Mathematics, Science and Engineering, 2nd Ed, 1992
% Prentice Hall, Englewood Cliffs, New Jersey, 07632, U.S.A.
% Prentice Hall, Inc.; USA, Canada, Mexico ISBN 0-13-624990-6
% Prentice Hall, International Editions: ISBN 0-13-625047-5
% This free software is compliments of the author.
% E-mail address: in%"mathews@fullerton.edu"
%
% Theorem 1.10 (Second Fundamental Theorem).
% Section 1.1, Review of Calculus, Page 8
%---------------------------------------------------------------------------
clc; clear all; format long;
% Theorem 1.10 (Second Fundamental Theorem). If f is continuous
%
% over the interval [a,b], then
%
% x
% d /
% -- | f(t) dt = f(x).
% dx /
% a
%
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
pause % Press any key to continue.
clc;
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% 4 3x
% Example for page 7. Let f(x) = x e sin(2x).
%
% x
% d /
% Show that -- | f(t) dt = f(x).
% dx /
% 0
f = 't^4*exp(3*t)*sin(2*t)'
g = int(f,'t',0,'x')
diff(g,'x')
clc;
%....................................
% Begin section to print the results.
%....................................
clc;disp(' ');disp(' ');disp('The function f(t) is:');...
disp(' ');disp(['f(t) = ' f]);...
disp(' ');disp('The integral is:');...
disp(' ');disp('x');...
disp(' ');disp('/');...
disp(' ');disp('| f(t)dt = g(x) = ');...
disp(' ');disp('/');...
disp(' ');disp('0');disp(g);...
disp(' ');disp('The derivative of g(x) is:');...
disp(' ');disp(['g`(x) = ' diff(g,'x')]);disp(' ');
pause % Press any key to continue.
clc;
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
% 2
% -x /2
% Example for page 7. Let f(x) = 1/sqrt(2*pi)e .
%
% d x
% Show that --
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -