📄 a3_5.m
字号:
echo on; clc;
%---------------------------------------------------------------------------
%A3_5 MATLAB script file for implementing Algorithm 3.5
%
% NUMERICAL METHODS: MATLAB Programs, (c) John H. Mathews 1995
% To accompany the text:
% NUMERICAL METHODS for Mathematics, Science and Engineering, 2nd Ed, 1992
% Prentice Hall, Englewood Cliffs, New Jersey, 07632, U.S.A.
% Prentice Hall, Inc.; USA, Canada, Mexico ISBN 0-13-624990-6
% Prentice Hall, International Editions: ISBN 0-13-625047-5
% This free software is compliments of the author.
% E-mail address: in%"mathews@fullerton.edu"
%
% Algorithm 3.5 (Gauss-Seidel Iteration).
% Section 3.7, Iterative Methods for Linear Systems, Page 187
%---------------------------------------------------------------------------
clc;
% - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
% This program solves a linear system AX = B.
%
% Where A is diagonally dominant.
%
% A is an n x n matrix, B is an n-dimensional vector.
%
% The method is Gauss-Seidel iteration.
%
% Remark. gseid.m is used for Algorithm 3.5
pause % Press any key to perform Gauss-Seidel iteration.
clc; clear all; format long;
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
% Example 3.27, page 183
%
% Use Gauss-Seidel iteration to solve the linear system A*X = B:
A = [ 4 -1 1;
4 -8 1;
-2 1 5];
B = [ 7; -21; 15]; % Enter B as a column vector.
pause % Press any key to continue.
clc;
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
% Example 3.27, page 183
% Use Gauss-Seidel iteration to solve the linear system.
%
% Enter the starting vector in P
% Enter the tolerance in delta
% Enter the number of iterations in max1
P = [ 1; 2; 2]; % Enter P as a column vector.
delta = 1e-12;
max1 = 50;
[X,dX,Pm] = gseid(A,B,P,delta,max1);
pause % Press any key to continue.
clc;
%............................................
% Begin section to print the results.
% Diary commands are included which write all
% the results to the Matlab textfile output
%............................................
Mx1 = 'Computations for Gauss-Seidel iteration.';
Mx2 = ' x y z';
Mx3 = 'The matrix is A =';
Mx4 = 'The vector B is displayed as B` =';
Mx5 = 'The solution X is displayed as X` = ';
Mx6 = 'The accuracy is +- dX, where dX` = ';
clc,echo off,diary output,...
disp(''),disp(Mx1),disp(Mx2),disp(Pm),...
diary off,echo on
pause % Press any key to continue.
clc,echo off,diary output,...
disp(Mx3),disp(A),disp(Mx4),disp(B'),...
disp(Mx5),disp(X'),disp(Mx6),disp(dX'),...
disp('Iteration is converging linearly to the solution.'),...
diary off,echo on
pause % Press any key to perform Gauss-Seidel iteration.
clc;
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
% Example 3.27*, page 180
%
% Use Gauss-Seidel iteration on the linear system A*X = B:
A = [-2 1 5;
4 -8 1;
4 -1 1];
B = [15; -21; 7]; % Enter B as a column vector.
pause % Press any key to continue.
clc;
% - - - - - - - - - - - - - - - - - - - - - - - - - - - -
%
% Example 3.27*, page 180
% Use Gauss-Seidel iteration on the linear system A*X = B.
%
% Enter the starting vector in P
% Enter the tolerance in delta
% Enter the number of iterations in max1
P = [ 1; 2; 2]; % Enter P as a column vector.
delta = 1e-12;
max1 = 4;
[X,dX,Pm] = gseid(A,B,P,delta,max1);
pause % Press any key to continue.
clc;
%............................................
% Begin section to print the results.
% Diary commands are included which write all
% the results to the Matlab textfile output
%............................................
clc,echo off,diary output,...
disp(''),disp(Mx1),disp(Mx2),disp(Pm),...
diary off,echo on
pause % Press any key to continue.
clc,echo off,diary output,...
disp(Mx3),disp(A),disp(Mx4),disp(B'),...
disp(Mx5),disp(X'),disp(Mx6),disp(dX'),...
disp('Iteration is diverging to infinity.'),...
disp('Notice the "scale factor" for the output.'),...
diary off,echo on
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -