📄 fec.c
字号:
if (ipiv[col] != 1 && src[col*k + col] != 0) { irow = col ; icol = col ; goto found_piv ; } for (row = 0 ; row < k ; row++) { if (ipiv[row] != 1) { for (ix = 0 ; ix < k ; ix++) { DEB( pivloops++ ; ) if (ipiv[ix] == 0) { if (src[row*k + ix] != 0) { irow = row ; icol = ix ; goto found_piv ; } } else if (ipiv[ix] > 1) { fprintf(stderr, "singular matrix\n"); goto fail ; } } } } if (icol == -1) { fprintf(stderr, "XXX pivot not found!\n"); goto fail ; }found_piv: ++(ipiv[icol]) ; /* * swap rows irow and icol, so afterwards the diagonal * element will be correct. Rarely done, not worth * optimizing. */ if (irow != icol) { for (ix = 0 ; ix < k ; ix++ ) { SWAP( src[irow*k + ix], src[icol*k + ix], gf) ; } } indxr[col] = irow ; indxc[col] = icol ; pivot_row = &src[icol*k] ; c = pivot_row[icol] ; if (c == 0) { fprintf(stderr, "singular matrix 2\n"); goto fail ; } if (c != 1 ) { /* otherwhise this is a NOP */ /* * this is done often , but optimizing is not so * fruitful, at least in the obvious ways (unrolling) */ DEB( pivswaps++ ; ) c = inverse[ c ] ; pivot_row[icol] = 1 ; for (ix = 0 ; ix < k ; ix++ ) pivot_row[ix] = gf_mul(c, pivot_row[ix] ); } /* * from all rows, remove multiples of the selected row * to zero the relevant entry (in fact, the entry is not zero * because we know it must be zero). * (Here, if we know that the pivot_row is the identity, * we can optimize the addmul). */ id_row[icol] = 1; if (bcmp(pivot_row, id_row, k*sizeof(gf)) != 0) { for (p = src, ix = 0 ; ix < k ; ix++, p += k ) { if (ix != icol) { c = p[icol] ; p[icol] = 0 ; addmul(p, pivot_row, c, k ); } } } id_row[icol] = 0; } /* done all columns */ for (col = k-1 ; col >= 0 ; col-- ) { if (indxr[col] <0 || indxr[col] >= k) fprintf(stderr, "AARGH, indxr[col] %d\n", indxr[col]); else if (indxc[col] <0 || indxc[col] >= k) fprintf(stderr, "AARGH, indxc[col] %d\n", indxc[col]); else if (indxr[col] != indxc[col] ) { for (row = 0 ; row < k ; row++ ) { SWAP( src[row*k + indxr[col]], src[row*k + indxc[col]], gf) ; } } } error = 0 ;fail: free(indxc); free(indxr); free(ipiv); free(id_row); free(temp_row); return error ;}/* * fast code for inverting a vandermonde matrix. * XXX NOTE: It assumes that the matrix * is not singular and _IS_ a vandermonde matrix. Only uses * the second column of the matrix, containing the p_i's. * * Algorithm borrowed from "Numerical recipes in C" -- sec.2.8, but * largely revised for my purposes. * p = coefficients of the matrix (p_i) * q = values of the polynomial (known) */intinvert_vdm(gf *src, int k){ int i, j, row, col ; gf *b, *c, *p; gf t, xx ; if (k == 1) /* degenerate case, matrix must be p^0 = 1 */ return 0 ; /* * c holds the coefficient of P(x) = Prod (x - p_i), i=0..k-1 * b holds the coefficient for the matrix inversion */ c = NEW_GF_MATRIX(1, k); b = NEW_GF_MATRIX(1, k); p = NEW_GF_MATRIX(1, k); for ( j=1, i = 0 ; i < k ; i++, j+=k ) { c[i] = 0 ; p[i] = src[j] ; /* p[i] */ } /* * construct coeffs. recursively. We know c[k] = 1 (implicit) * and start P_0 = x - p_0, then at each stage multiply by * x - p_i generating P_i = x P_{i-1} - p_i P_{i-1} * After k steps we are done. */ c[k-1] = p[0] ; /* really -p(0), but x = -x in GF(2^m) */ for (i = 1 ; i < k ; i++ ) { gf p_i = p[i] ; /* see above comment */ for (j = k-1 - ( i - 1 ) ; j < k-1 ; j++ ) c[j] ^= gf_mul( p_i, c[j+1] ) ; c[k-1] ^= p_i ; } for (row = 0 ; row < k ; row++ ) { /* * synthetic division etc. */ xx = p[row] ; t = 1 ; b[k-1] = 1 ; /* this is in fact c[k] */ for (i = k-2 ; i >= 0 ; i-- ) { b[i] = c[i+1] ^ gf_mul(xx, b[i+1]) ; t = gf_mul(xx, t) ^ b[i] ; } for (col = 0 ; col < k ; col++ ) src[col*k + row] = gf_mul(inverse[t], b[col] ); } free(c) ; free(b) ; free(p) ; return 0 ;}static int fec_initialized = 0 ;static voidinit_fec(){ TICK(ticks[0]); generate_gf(); TOCK(ticks[0]); DDB(fprintf(stderr, "generate_gf took %ldus\n", ticks[0]);) TICK(ticks[0]); init_mul_table(); TOCK(ticks[0]); DDB(fprintf(stderr, "init_mul_table took %ldus\n", ticks[0]);) fec_initialized = 1 ;}/* * This section contains the proper FEC encoding/decoding routines. * The encoding matrix is computed starting with a Vandermonde matrix, * and then transforming it into a systematic matrix. */#define FEC_MAGIC 0xFECC0DECstruct fec_parms { u_long magic ; int k, n ; /* parameters of the code */ gf *enc_matrix ;} ;voidfec_free(struct fec_parms *p){ if (p==NULL || p->magic != ( ( (FEC_MAGIC ^ p->k) ^ p->n) ^ (int)(p->enc_matrix)) ) { fprintf(stderr, "bad parameters to fec_free\n"); return ; } free(p->enc_matrix); free(p);}/* * create a new encoder, returning a descriptor. This contains k,n and * the encoding matrix. */struct fec_parms *fec_new(int k, int n){ int row, col ; gf *p, *tmp_m ; struct fec_parms *retval ; if (fec_initialized == 0) init_fec(); if (k > GF_SIZE + 1 || n > GF_SIZE + 1 || k > n ) { fprintf(stderr, "Invalid parameters k %d n %d GF_SIZE %d\n", k, n, GF_SIZE ); return NULL ; } retval = my_malloc(sizeof(struct fec_parms), "new_code"); retval->k = k ; retval->n = n ; retval->enc_matrix = NEW_GF_MATRIX(n, k); retval->magic = ( ( FEC_MAGIC ^ k) ^ n) ^ (int)(retval->enc_matrix) ; tmp_m = NEW_GF_MATRIX(n, k); /* * fill the matrix with powers of field elements, starting from 0. * The first row is special, cannot be computed with exp. table. */ tmp_m[0] = 1 ; for (col = 1; col < k ; col++) tmp_m[col] = 0 ; for (p = tmp_m + k, row = 0; row < n-1 ; row++, p += k) { for ( col = 0 ; col < k ; col ++ ) p[col] = gf_exp[modnn(row*col)]; } /* * quick code to build systematic matrix: invert the top * k*k vandermonde matrix, multiply right the bottom n-k rows * by the inverse, and construct the identity matrix at the top. */ TICK(ticks[3]); invert_vdm(tmp_m, k); /* much faster than invert_mat */ matmul(tmp_m + k*k, tmp_m, retval->enc_matrix + k*k, n - k, k, k); /* * the upper matrix is I so do not bother with a slow multiply */ bzero(retval->enc_matrix, k*k*sizeof(gf) ); for (p = retval->enc_matrix, col = 0 ; col < k ; col++, p += k+1 ) *p = 1 ; free(tmp_m); TOCK(ticks[3]); DDB(fprintf(stderr, "--- %ld us to build encoding matrix\n", ticks[3]);) DEB(pr_matrix(retval->enc_matrix, n, k, "encoding_matrix");) return retval ;}/* * fec_encode accepts as input pointers to n data packets of size sz, * and produces as output a packet pointed to by fec, computed * with index "index". */voidfec_encode(struct fec_parms *code, gf *src[], gf *fec, int index, int sz){ int i, k = code->k ; gf *p ; if (GF_BITS > 8) sz /= 2 ; if (index < k) bcopy(src[index], fec, sz*sizeof(gf) ) ; else if (index < code->n) { p = &(code->enc_matrix[index*k] ); bzero(fec, sz*sizeof(gf)); for (i = 0; i < k ; i++) addmul(fec, src[i], p[i], sz ) ; } else fprintf(stderr, "Invalid index %d (max %d)\n", index, code->n - 1 );}/* * shuffle move src packets in their position */static intshuffle(gf *pkt[], int index[], int k){ int i; for ( i = 0 ; i < k ; ) { if (index[i] >= k || index[i] == i) i++ ; else { /* * put pkt in the right position (first check for conflicts). */ int c = index[i] ; if (index[c] == c) { DEB(fprintf(stderr, "\nshuffle, error at %d\n", i);) return 1 ; } SWAP(index[i], index[c], int) ; SWAP(pkt[i], pkt[c], gf *) ; } } DEB( /* just test that it works... */ for ( i = 0 ; i < k ; i++ ) { if (index[i] < k && index[i] != i) { fprintf(stderr, "shuffle: after\n"); for (i=0; i<k ; i++) fprintf(stderr, "%3d ", index[i]); fprintf(stderr, "\n"); return 1 ; } } ) return 0 ;}/* * build_decode_matrix constructs the encoding matrix given the * indexes. The matrix must be already allocated as * a vector of k*k elements, in row-major order */static gf *build_decode_matrix(struct fec_parms *code, gf *pkt[], int index[]){ int i , k = code->k ; gf *p, *matrix = NEW_GF_MATRIX(k, k); TICK(ticks[9]); for (i = 0, p = matrix ; i < k ; i++, p += k ) {#if 1 /* this is simply an optimization, not very useful indeed */ if (index[i] < k) { bzero(p, k*sizeof(gf) ); p[i] = 1 ; } else#endif if (index[i] < code->n ) bcopy( &(code->enc_matrix[index[i]*k]), p, k*sizeof(gf) ); else { fprintf(stderr, "decode: invalid index %d (max %d)\n", index[i], code->n - 1 ); free(matrix) ; return NULL ; } } TICK(ticks[9]); if (invert_mat(matrix, k)) { free(matrix); matrix = NULL ; } TOCK(ticks[9]); return matrix ;}/* * fec_decode receives as input a vector of packets, the indexes of * packets, and produces the correct vector as output. * * Input: * code: pointer to code descriptor * pkt: pointers to received packets. They are modified * to store the output packets (in place) * index: pointer to packet indexes (modified) * sz: size of each packet */intfec_decode(struct fec_parms *code, gf *pkt[], int index[], int sz){ gf *m_dec ; gf **new_pkt ; int row, col , k = code->k ; if (GF_BITS > 8) sz /= 2 ; if (shuffle(pkt, index, k)) /* error if true */ return 1 ; m_dec = build_decode_matrix(code, pkt, index); if (m_dec == NULL) return 1 ; /* error */ /* * do the actual decoding */ new_pkt = my_malloc (k * sizeof (gf * ), "new pkt pointers" ); for (row = 0 ; row < k ; row++ ) { if (index[row] >= k) { new_pkt[row] = my_malloc (sz * sizeof (gf), "new pkt buffer" ); bzero(new_pkt[row], sz * sizeof(gf) ) ; for (col = 0 ; col < k ; col++ ) addmul(new_pkt[row], pkt[col], m_dec[row*k + col], sz) ; } } /* * move pkts to their final destination */ for (row = 0 ; row < k ; row++ ) { if (index[row] >= k) { bcopy(new_pkt[row], pkt[row], sz*sizeof(gf)); free(new_pkt[row]); } } free(new_pkt); free(m_dec); return 0;}/*********** end of FEC code -- beginning of test code ************/#if (TEST || DEBUG)voidtest_gf(){ int i ; /* * test gf tables. Sufficiently tested... */ for (i=0; i<= GF_SIZE; i++) { if (gf_exp[gf_log[i]] != i) fprintf(stderr, "bad exp/log i %d log %d exp(log) %d\n", i, gf_log[i], gf_exp[gf_log[i]]); if (i != 0 && gf_mul(i, inverse[i]) != 1) fprintf(stderr, "bad mul/inv i %d inv %d i*inv(i) %d\n", i, inverse[i], gf_mul(i, inverse[i]) ); if (gf_mul(0,i) != 0) fprintf(stderr, "bad mul table 0,%d\n",i); if (gf_mul(i,0) != 0) fprintf(stderr, "bad mul table %d,0\n",i); }}#endif /* TEST */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -