📄 fec.c
字号:
/* * fec.c -- forward error correction based on Vandermonde matrices * 980624 * (C) 1997-98 Luigi Rizzo (luigi@iet.unipi.it) * * Portions derived from code by Phil Karn (karn@ka9q.ampr.org), * Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari * Thirumoorthy (harit@spectra.eng.hawaii.edu), Aug 1995 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. *//* * The following parameter defines how many bits are used for * field elements. The code supports any value from 2 to 16 * but fastest operation is achieved with 8 bit elements * This is the only parameter you may want to change. */#ifndef GF_BITS#define GF_BITS 8 /* code over GF(2**GF_BITS) - change to suit */#endif#include <stdio.h>#include <stdlib.h>#include <string.h>/* * compatibility stuff */#ifdef MSDOS /* but also for others, e.g. sun... */#define NEED_BCOPY#define bcmp(a,b,n) memcmp(a,b,n)#endif#ifdef NEED_BCOPY#define bcopy(s, d, siz) memcpy((d), (s), (siz))#define bzero(d, siz) memset((d), '\0', (siz))#endif/* * stuff used for testing purposes only */#ifdef TEST#define DEB(x)#define DDB(x) x#define DEBUG 0 /* minimal debugging */#ifdef MSDOS#include <time.h>struct timeval { unsigned long ticks;};#define gettimeofday(x, dummy) { (x)->ticks = clock() ; }#define DIFF_T(a,b) (1+ 1000000*(a.ticks - b.ticks) / CLOCKS_PER_SEC )typedef unsigned long u_long ;typedef unsigned short u_short ;#else /* typically, unix systems */#include <sys/time.h>#define DIFF_T(a,b) \ (1+ 1000000*(a.tv_sec - b.tv_sec) + (a.tv_usec - b.tv_usec) )#endif#define TICK(t) \ {struct timeval x ; \ gettimeofday(&x, NULL) ; \ t = x.tv_usec + 1000000* (x.tv_sec & 0xff ) ; \ }#define TOCK(t) \ { u_long t1 ; TICK(t1) ; \ if (t1 < t) t = 256000000 + t1 - t ; \ else t = t1 - t ; \ if (t == 0) t = 1 ;} u_long ticks[10]; /* vars for timekeeping */#else#define DEB(x)#define DDB(x)#define TICK(x)#define TOCK(x)#endif /* TEST *//* * You should not need to change anything beyond this point. * The first part of the file implements linear algebra in GF. * * gf is the type used to store an element of the Galois Field. * Must constain at least GF_BITS bits. * * Note: unsigned char will work up to GF(256) but int seems to run * faster on the Pentium. We use int whenever have to deal with an * index, since they are generally faster. */#if (GF_BITS < 2 && GF_BITS >16)#error "GF_BITS must be 2 .. 16"#endif#if (GF_BITS <= 8)typedef unsigned char gf;#elsetypedef unsigned short gf;#endif#define GF_SIZE ((1 << GF_BITS) - 1) /* powers of \alpha *//* * Primitive polynomials - see Lin & Costello, Appendix A, * and Lee & Messerschmitt, p. 453. */static char *allPp[] = { /* GF_BITS polynomial */ NULL, /* 0 no code */ NULL, /* 1 no code */ "111", /* 2 1+x+x^2 */ "1101", /* 3 1+x+x^3 */ "11001", /* 4 1+x+x^4 */ "101001", /* 5 1+x^2+x^5 */ "1100001", /* 6 1+x+x^6 */ "10010001", /* 7 1 + x^3 + x^7 */ "101110001", /* 8 1+x^2+x^3+x^4+x^8 */ "1000100001", /* 9 1+x^4+x^9 */ "10010000001", /* 10 1+x^3+x^10 */ "101000000001", /* 11 1+x^2+x^11 */ "1100101000001", /* 12 1+x+x^4+x^6+x^12 */ "11011000000001", /* 13 1+x+x^3+x^4+x^13 */ "110000100010001", /* 14 1+x+x^6+x^10+x^14 */ "1100000000000001", /* 15 1+x+x^15 */ "11010000000010001" /* 16 1+x+x^3+x^12+x^16 */};/* * To speed up computations, we have tables for logarithm, exponent * and inverse of a number. If GF_BITS <= 8, we use a table for * multiplication as well (it takes 64K, no big deal even on a PDA, * especially because it can be pre-initialized an put into a ROM!), * otherwhise we use a table of logarithms. * In any case the macro gf_mul(x,y) takes care of multiplications. */static gf gf_exp[2*GF_SIZE]; /* index->poly form conversion table */static int gf_log[GF_SIZE + 1]; /* Poly->index form conversion table */static gf inverse[GF_SIZE+1]; /* inverse of field elem. */ /* inv[\alpha**i]=\alpha**(GF_SIZE-i-1) *//* * modnn(x) computes x % GF_SIZE, where GF_SIZE is 2**GF_BITS - 1, * without a slow divide. */static inline gfmodnn(int x){ while (x >= GF_SIZE) { x -= GF_SIZE; x = (x >> GF_BITS) + (x & GF_SIZE); } return x;}#define SWAP(a,b,t) {t tmp; tmp=a; a=b; b=tmp;}/* * gf_mul(x,y) multiplies two numbers. If GF_BITS<=8, it is much * faster to use a multiplication table. * * USE_GF_MULC, GF_MULC0(c) and GF_ADDMULC(x) can be used when multiplying * many numbers by the same constant. In this case the first * call sets the constant, and others perform the multiplications. * A value related to the multiplication is held in a local variable * declared with USE_GF_MULC . See usage in addmul1(). */#if (GF_BITS <= 8)static gf gf_mul_table[GF_SIZE + 1][GF_SIZE + 1];#define gf_mul(x,y) gf_mul_table[x][y]#define USE_GF_MULC register gf * __gf_mulc_#define GF_MULC0(c) __gf_mulc_ = gf_mul_table[c]#define GF_ADDMULC(dst, x) dst ^= __gf_mulc_[x]static voidinit_mul_table(){ int i, j; for (i=0; i< GF_SIZE+1; i++) for (j=0; j< GF_SIZE+1; j++) gf_mul_table[i][j] = gf_exp[modnn(gf_log[i] + gf_log[j]) ] ; for (j=0; j< GF_SIZE+1; j++) gf_mul_table[0][j] = gf_mul_table[j][0] = 0;}#else /* GF_BITS > 8 */static inline gfgf_mul(x,y){ if ( (x) == 0 || (y)==0 ) return 0; return gf_exp[gf_log[x] + gf_log[y] ] ;}#define init_mul_table()#define USE_GF_MULC register gf * __gf_mulc_#define GF_MULC0(c) __gf_mulc_ = &gf_exp[ gf_log[c] ]#define GF_ADDMULC(dst, x) { if (x) dst ^= __gf_mulc_[ gf_log[x] ] ; }#endif/* * Generate GF(2**m) from the irreducible polynomial p(X) in p[0]..p[m] * Lookup tables: * index->polynomial form gf_exp[] contains j= \alpha^i; * polynomial form -> index form gf_log[ j = \alpha^i ] = i * \alpha=x is the primitive element of GF(2^m) * * For efficiency, gf_exp[] has size 2*GF_SIZE, so that a simple * multiplication of two numbers can be resolved without calling modnn *//* * i use malloc so many times, it is easier to put checks all in * one place. */static void *my_malloc(int sz, char *err_string){ void *p = malloc( sz ); if (p == NULL) { fprintf(stderr, "-- malloc failure allocating %s\n", err_string); exit(1) ; } return p ;}#define NEW_GF_MATRIX(rows, cols) \ (gf *)my_malloc(rows * cols * sizeof(gf), " ## __LINE__ ## " )/* * initialize the data structures used for computations in GF. */static voidgenerate_gf(void){ int i; gf mask; char *Pp = allPp[GF_BITS] ; mask = 1; /* x ** 0 = 1 */ gf_exp[GF_BITS] = 0; /* will be updated at the end of the 1st loop */ /* * first, generate the (polynomial representation of) powers of \alpha, * which are stored in gf_exp[i] = \alpha ** i . * At the same time build gf_log[gf_exp[i]] = i . * The first GF_BITS powers are simply bits shifted to the left. */ for (i = 0; i < GF_BITS; i++, mask <<= 1 ) { gf_exp[i] = mask; gf_log[gf_exp[i]] = i; /* * If Pp[i] == 1 then \alpha ** i occurs in poly-repr * gf_exp[GF_BITS] = \alpha ** GF_BITS */ if ( Pp[i] == '1' ) gf_exp[GF_BITS] ^= mask; } /* * now gf_exp[GF_BITS] = \alpha ** GF_BITS is complete, so can als * compute its inverse. */ gf_log[gf_exp[GF_BITS]] = GF_BITS; /* * Poly-repr of \alpha ** (i+1) is given by poly-repr of * \alpha ** i shifted left one-bit and accounting for any * \alpha ** GF_BITS term that may occur when poly-repr of * \alpha ** i is shifted. */ mask = 1 << (GF_BITS - 1 ) ; for (i = GF_BITS + 1; i < GF_SIZE; i++) { if (gf_exp[i - 1] >= mask) gf_exp[i] = gf_exp[GF_BITS] ^ ((gf_exp[i - 1] ^ mask) << 1); else gf_exp[i] = gf_exp[i - 1] << 1; gf_log[gf_exp[i]] = i; } /* * log(0) is not defined, so use a special value */ gf_log[0] = GF_SIZE ; /* set the extended gf_exp values for fast multiply */ for (i = 0 ; i < GF_SIZE ; i++) gf_exp[i + GF_SIZE] = gf_exp[i] ; /* * again special cases. 0 has no inverse. This used to * be initialized to GF_SIZE, but it should make no difference * since noone is supposed to read from here. */ inverse[0] = 0 ; inverse[1] = 1; for (i=2; i<=GF_SIZE; i++) inverse[i] = gf_exp[GF_SIZE-gf_log[i]];}/* * Various linear algebra operations that i use often. *//* * addmul() computes dst[] = dst[] + c * src[] * This is used often, so better optimize it! Currently the loop is * unrolled 16 times, a good value for 486 and pentium-class machines. * The case c=0 is also optimized, whereas c=1 is not. These * calls are unfrequent in my typical apps so I did not bother. * * Note that gcc on */#define addmul(dst, src, c, sz) \ if (c != 0) addmul1(dst, src, c, sz)#define UNROLL 16 /* 1, 4, 8, 16 */static voidaddmul1(gf *dst1, gf *src1, gf c, int sz){ USE_GF_MULC ; register gf *dst = dst1, *src = src1 ; gf *lim = &dst[sz - UNROLL + 1] ; GF_MULC0(c) ;#if (UNROLL > 1) /* unrolling by 8/16 is quite effective on the pentium */ for (; dst < lim ; dst += UNROLL, src += UNROLL ) { GF_ADDMULC( dst[0] , src[0] ); GF_ADDMULC( dst[1] , src[1] ); GF_ADDMULC( dst[2] , src[2] ); GF_ADDMULC( dst[3] , src[3] );#if (UNROLL > 4) GF_ADDMULC( dst[4] , src[4] ); GF_ADDMULC( dst[5] , src[5] ); GF_ADDMULC( dst[6] , src[6] ); GF_ADDMULC( dst[7] , src[7] );#endif#if (UNROLL > 8) GF_ADDMULC( dst[8] , src[8] ); GF_ADDMULC( dst[9] , src[9] ); GF_ADDMULC( dst[10] , src[10] ); GF_ADDMULC( dst[11] , src[11] ); GF_ADDMULC( dst[12] , src[12] ); GF_ADDMULC( dst[13] , src[13] ); GF_ADDMULC( dst[14] , src[14] ); GF_ADDMULC( dst[15] , src[15] );#endif }#endif lim += UNROLL - 1 ; for (; dst < lim; dst++, src++ ) /* final components */ GF_ADDMULC( *dst , *src );}/* * computes C = AB where A is n*k, B is k*m, C is n*m */static voidmatmul(gf *a, gf *b, gf *c, int n, int k, int m){ int row, col, i ; for (row = 0; row < n ; row++) { for (col = 0; col < m ; col++) { gf *pa = &a[ row * k ]; gf *pb = &b[ col ]; gf acc = 0 ; for (i = 0; i < k ; i++, pa++, pb += m ) acc ^= gf_mul( *pa, *pb ) ; c[ row * m + col ] = acc ; } }}#ifdef DEBUG/* * returns 1 if the square matrix is identiy * (only for test) */static intis_identity(gf *m, int k){ int row, col ; for (row=0; row<k; row++) for (col=0; col<k; col++) if ( (row==col && *m != 1) || (row!=col && *m != 0) ) return 0 ; else m++ ; return 1 ;}#endif /* debug *//* * invert_mat() takes a matrix and produces its inverse * k is the size of the matrix. * (Gauss-Jordan, adapted from Numerical Recipes in C) * Return non-zero if singular. */DEB( int pivloops=0; int pivswaps=0 ; /* diagnostic */)static intinvert_mat(gf *src, int k){ gf c, *p ; int irow, icol, row, col, i, ix ; int error = 1 ; int *indxc = my_malloc(k*sizeof(int), "indxc"); int *indxr = my_malloc(k*sizeof(int), "indxr"); int *ipiv = my_malloc(k*sizeof(int), "ipiv"); gf *id_row = NEW_GF_MATRIX(1, k); gf *temp_row = NEW_GF_MATRIX(1, k); bzero(id_row, k*sizeof(gf)); DEB( pivloops=0; pivswaps=0 ; /* diagnostic */ ) /* * ipiv marks elements already used as pivots. */ for (i = 0; i < k ; i++) ipiv[i] = 0 ; for (col = 0; col < k ; col++) { gf *pivot_row ; /* * Zeroing column 'col', look for a non-zero element. * First try on the diagonal, if it fails, look elsewhere. */ irow = icol = -1 ;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -