📄 gibbs_sp.m
字号:
function [ProbSt, GammaSt, storeS]= ... gibbs_sp(gamprec,probprec,X,Ytilde,QqrP,RqrP,k,delta,w,v1,nPar);%gibbs_sp: Gibbs Sampler - Selection prior - nPar iterations%*******************************************************************%INPUTS:% gamprec, initial binary vector.% probprec, log-relative posterior probability of gamprec% X, independent variables, n by p% Ytilde, augmented response matrix, (n+p) by q% QqrP,RqrP, QR-matrices for gamprec% k,delta, hyperparameters Inverse Wishart% w, hyperparameter Bernoulli priors% v1, hyperparameter - normal selection prior% (column vector (p by 1) of standard deviations) % nPar, number of iterations%%OUTPUTS:% ProbSt, log-relative posterior probabilities% of visited vectors% GammaSt, visited vectors% storeS, number of component switches (out of p) from iteration% to iteration.%%USAGE:% [ProbSt, GammaSt, storeS]= ... % gibbs_sp(gamprec,probprec,X,Ytilde,QqrP,RqrP,k,delta,w,v1,nPar);%%NOTES:% One iteration consists of p Bernoulli draws (function itergs_sp.m)% Called by bvsgs_sp% Functions called: itergs_sp.m% %REFERENCE:% Brown, P.J., Vannucci, M. and Fearn, T.% Multivariate Bayesian variable selection and prediction% Journal of the Royal Statistical Society B, 60(3), 1998, pp. 627-641.% %Copyright (c) 1997 Marina Vannucci.%**********************************************************************p=size(X,2);storeS=zeros(1,nPar);GammaSt=sparse(zeros(nPar,p));ProbSt=zeros(1,nPar);for i=1:nPar%------------------- One iteration consists of p Bernoulli draws % (function itergs_sp.m) [gamprec, probprec, QqrN, RqrN, swit] = ... itergs_sp(gamprec,probprec,X,Ytilde,QqrP,RqrP,k,delta,w,v1); QqrP=QqrN; RqrP=RqrN; GammaSt(i,:)=gamprec; ProbSt(i)=probprec; storeS(i)=swit;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -