📄 errorimage.m
字号:
function [out] = errorimage(data,I,J)
%
% |----------------------------------------------------------|
% | Hybrid Texture Synthesis MATLAB package |
% | |
% | Author: Andrew Nealen |
% | Discrete Geometric Modeling Group |
% | Technische Universitaet Darmstadt, Germany |
% | |
% | Note: This is part of the prototype implementation |
% | accompanying our paper/my thesis |
% | |
% | Hybrid Texture Synthesis. A. Nealen and M. Alexa |
% | Eurographics Symposium on Rendering 2003 |
% | |
% | Hybrid Texture Synthesis. A. Nealen |
% | Diplomarbeit (MSc), TU Darmstadt, 2003 |
% | |
% | See the paper/thesis for further details. |
% |----------------------------------------------------------|
%
% File errorimage.m
%
% [out] = errorimage(data,I,J)
%
% This subroutine will compute the error
% surface for a given transformed texure, image mask and mask
% support function.
% fft L2 norm from hierarchical pattern mapping (hpm) paper:
%
% 'Hierarchical Pattern Mapping', Soler C., Cani M.-P., Angelidis A.
% in proceedings of SIGGRAPH 2002
%
% extended to color channel weighting from hybrid texture synthesis (hts) paper
%
% 'Hybrid Texture Synthesis', Nealen A., Alexa M.
% eurographics symposium on rendering 2003
%
% complexity O(N log N) with N = w x h
%
% INPUT:
% data - the input datastructure as defined in hybridsynthesize.m and gen_input.m
% I - the image mask
% J - the binary mask support function
%
% OUTPUT:
% out - the error image with error values in [0,1]
%
% The routine will return the error image. indices
% are 1-based, meaning the value in the upper left corner
% is the error for shifting mask by +1 pixel in x and y
% directions. the zero value for no translation is stored
% at index [h,w] (bottom right), which is eqivalent to no
% translation as the input texture is handled toroidally
%
% see also ROIPOLY for creation of binary mask
%
out = zeros(size(I,1), size(I,2)); % init error surface with zeros
J = im2double(J); % binary image mask
% if there exists no mask support, out is filled with 0's
if (sum(J(:)) <= 0),
return;
end
fftJ = fft2(J); % fft of J
fftI = fft2(I); % fft of I (image mask)
% symbolic constants for color channel weighting
RED_WEIGHT = 0.299;
GREEN_WEIGHT = 0.587;
BLUE_WEIGHT = 0.114;
% channel weights vector
w = [RED_WEIGHT, GREEN_WEIGHT, BLUE_WEIGHT];
% equation (2) from hts paper, either seperated by color channel.
% weighted by color channel as given in w
for color=1:3,
Icolor = I(:,:,color);
out = out + w(color)*((real(ifft2(fftJ.*conj(data.fftTs(:,:,color)))) - ...
2 * real(ifft2(fftI(:,:,color).*conj(data.fftT(:,:,color)))) + sum(Icolor(:).^2)));
end
% normalize (1/kappa in hts paper)
out = out ./ sum(J(:));
% output error image must be rotated by 180 degrees (equiv. to mirror about both main axes)
% this ensures that each coordinate (x,y) in the error image stores the value for picking
% the patch from the input texture with (x,y) as upper left bounding box cordinate.
% this is mainly to make the output more intuitive, as if we were circularly shifting
% the mask I and binary support J, where in reality we are circularly shifting the
% input texture T (see equation (1) in 'hybrid texture synthesis' paper)
out = rot90(out,2);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -