📄 stepwiseregression.dat
字号:
f1=1.460000e+000 f2=1.450000e+000
original x(i) and y values:
x(0)= 7.00 x(1)= 26.00 x(2)= 6.00 x(3)= 60.00 y= 78.50
x(0)= 1.00 x(1)= 29.00 x(2)= 15.00 x(3)= 52.00 y= 74.30
x(0)= 11.00 x(1)= 56.00 x(2)= 8.00 x(3)= 20.00 y=104.30
x(0)= 11.00 x(1)= 31.00 x(2)= 8.00 x(3)= 47.00 y= 87.60
x(0)= 7.00 x(1)= 52.00 x(2)= 6.00 x(3)= 33.00 y= 95.90
x(0)= 11.00 x(1)= 55.00 x(2)= 9.00 x(3)= 22.00 y=109.20
x(0)= 3.00 x(1)= 71.00 x(2)= 17.00 x(3)= 6.00 y=102.70
x(0)= 1.00 x(1)= 31.00 x(2)= 22.00 x(3)= 44.00 y= 72.50
x(0)= 2.00 x(1)= 54.00 x(2)= 18.00 x(3)= 22.00 y= 93.10
x(0)= 21.00 x(1)= 47.00 x(2)= 4.00 x(3)= 26.00 y=115.90
x(0)= 1.00 x(1)= 40.00 x(2)= 23.00 x(3)= 34.00 y= 83.80
x(0)= 11.00 x(1)= 66.00 x(2)= 9.00 x(3)= 12.00 y=113.30
x(0)= 10.00 x(1)= 68.00 x(2)= 8.00 x(3)= 12.00 y=109.40
mean of x(i) and y:
x(0)= 7.462 x(1)=48.154 x(2)=11.769 x(3)=30.000 y=95.423
regression coeffi b(i):
b(0)= 1.451938 b(1)= 0.416110 b(2)= 0.000000 b(3)=-0.236540 b(4)=71.648307
standard partial sum of square of
regression for x(i) and sum of
square of residuals:
v(0)=-3.022750e-001 v(1)=-9.864403e-003 v(2)=4.016921e-005 v(3)=-3.657077e-003
q=4.797273e+001
standard deviation of regression
coeffi and regression equation:
s(0)=1.169976e-001 s(1)=1.856105e-001 s(2)=0.000000e+000 s(3)=1.732878e-001
s=2.308745e+000
multi-correlation coeffi c is:9.911284e-001
the f value=1.668317e+002
estimated values and residuals:
ye(0)=7.843831e+001 yr(0)=6.168641e-002
ye(1)=7.286734e+001 yr(1)=1.432663e+000
ye(2)=1.061910e+002 yr(2)=-1.890967e+000
ye(3)=8.940164e+001 yr(3)=-1.801637e+000
ye(4)=9.564375e+001 yr(4)=2.562468e-001
ye(5)=1.053018e+002 yr(5)=3.898223e+000
ye(6)=1.041287e+002 yr(6)=-1.428673e+000
ye(7)=7.559188e+001 yr(7)=-3.091878e+000
ye(8)=9.181823e+001 yr(8)=1.281775e+000
ye(9)=1.155461e+002 yr(9)=3.538826e-001
ye(10)=8.170227e+001 yr(10)=2.097732e+000
ye(11)=1.122444e+002 yr(11)=1.055614e+000
ye(12)=1.116247e+002 yr(12)=-2.224668e+000
matrix r:
1.066330e+000 2.043901e-001 -8.936536e-001 4.605878e-001 5.677366e-001
2.043901e-001 1.878031e+001 -2.242266e+000 1.832256e+001 4.304144e-001
8.936536e-001 2.242266e+000 2.133634e-002 2.371430e+000 9.257775e-004
4.605878e-001 1.832256e+001 -2.371430e+000 1.894008e+001 -2.631830e-001
-5.677366e-001 -4.304144e-001 9.257775e-004 2.631830e-001 1.766455e-002
f1=4.750000e+000 f2=4.670000e+000
original x(i) and y values:
x(0)= 7.00 x(1)= 26.00 x(2)= 6.00 x(3)= 60.00 y= 78.50
x(0)= 1.00 x(1)= 29.00 x(2)= 15.00 x(3)= 52.00 y= 74.30
x(0)= 11.00 x(1)= 56.00 x(2)= 8.00 x(3)= 20.00 y=104.30
x(0)= 11.00 x(1)= 31.00 x(2)= 8.00 x(3)= 47.00 y= 87.60
x(0)= 7.00 x(1)= 52.00 x(2)= 6.00 x(3)= 33.00 y= 95.90
x(0)= 11.00 x(1)= 55.00 x(2)= 9.00 x(3)= 22.00 y=109.20
x(0)= 3.00 x(1)= 71.00 x(2)= 17.00 x(3)= 6.00 y=102.70
x(0)= 1.00 x(1)= 31.00 x(2)= 22.00 x(3)= 44.00 y= 72.50
x(0)= 2.00 x(1)= 54.00 x(2)= 18.00 x(3)= 22.00 y= 93.10
x(0)= 21.00 x(1)= 47.00 x(2)= 4.00 x(3)= 26.00 y=115.90
x(0)= 1.00 x(1)= 40.00 x(2)= 23.00 x(3)= 34.00 y= 83.80
x(0)= 11.00 x(1)= 66.00 x(2)= 9.00 x(3)= 12.00 y=113.30
x(0)= 10.00 x(1)= 68.00 x(2)= 8.00 x(3)= 12.00 y=109.40
mean of x(i) and y:
x(0)= 7.462 x(1)=48.154 x(2)=11.769 x(3)=30.000 y=95.423
regression coeffi b(i):
b(0)= 1.468306 b(1)= 0.662250 b(2)= 0.000000 b(3)= 0.000000 b(4)=52.577349
standard partial sum of square of
regression for x(i) and sum of
square of residuals:
v(0)=-3.124101e-001 v(1)=-4.447304e-001 v(2)=3.606305e-003 v(3)=3.657077e-003
q=5.790448e+001
standard deviation of regression
coeffi and regression equation:
s(0)=1.213009e-001 s(1)=4.585472e-002 s(2)=0.000000e+000 s(3)=0.000000e+000
s=2.406335e+000
multi-correlation coeffi c is:9.892817e-001
the f value=2.295037e+002
estimated values and residuals:
ye(0)=8.007400e+001 yr(0)=-1.574002e+000
ye(1)=7.325092e+001 yr(1)=1.049081e+000
ye(2)=1.058147e+002 yr(2)=-1.514740e+000
ye(3)=8.925848e+001 yr(3)=-1.658477e+000
ye(4)=9.729251e+001 yr(4)=-1.392515e+000
ye(5)=1.051525e+002 yr(5)=4.047511e+000
ye(6)=1.040021e+002 yr(6)=-1.302051e+000
ye(7)=7.457542e+001 yr(7)=-2.075420e+000
ye(8)=9.127549e+001 yr(8)=1.824513e+000
ye(9)=1.145375e+002 yr(9)=1.362457e+000
ye(10)=8.053567e+001 yr(10)=3.264326e+000
ye(11)=1.124372e+002 yr(11)=8.627555e-001
ye(12)=1.122934e+002 yr(12)=-2.893440e+000
matrix r:
1.055129e+000 -2.411808e-001 -8.359848e-001 -2.431816e-002 5.741367e-001
-2.411808e-001 1.055129e+000 5.184659e-002 -9.673964e-001 6.850167e-001
8.359848e-001 -5.184659e-002 3.182559e-001 -1.252070e-001 3.387813e-002
2.431816e-002 9.673964e-001 -1.252070e-001 5.279810e-002 -1.389556e-002
-5.741367e-001 -6.850167e-001 3.387813e-002 -1.389556e-002 2.132163e-002
f1=9.330000e+000 f2=9.070000e+000
original x(i) and y values:
x(0)= 7.00 x(1)= 26.00 x(2)= 6.00 x(3)= 60.00 y= 78.50
x(0)= 1.00 x(1)= 29.00 x(2)= 15.00 x(3)= 52.00 y= 74.30
x(0)= 11.00 x(1)= 56.00 x(2)= 8.00 x(3)= 20.00 y=104.30
x(0)= 11.00 x(1)= 31.00 x(2)= 8.00 x(3)= 47.00 y= 87.60
x(0)= 7.00 x(1)= 52.00 x(2)= 6.00 x(3)= 33.00 y= 95.90
x(0)= 11.00 x(1)= 55.00 x(2)= 9.00 x(3)= 22.00 y=109.20
x(0)= 3.00 x(1)= 71.00 x(2)= 17.00 x(3)= 6.00 y=102.70
x(0)= 1.00 x(1)= 31.00 x(2)= 22.00 x(3)= 44.00 y= 72.50
x(0)= 2.00 x(1)= 54.00 x(2)= 18.00 x(3)= 22.00 y= 93.10
x(0)= 21.00 x(1)= 47.00 x(2)= 4.00 x(3)= 26.00 y=115.90
x(0)= 1.00 x(1)= 40.00 x(2)= 23.00 x(3)= 34.00 y= 83.80
x(0)= 11.00 x(1)= 66.00 x(2)= 9.00 x(3)= 12.00 y=113.30
x(0)= 10.00 x(1)= 68.00 x(2)= 8.00 x(3)= 12.00 y=109.40
mean of x(i) and y:
x(0)= 7.462 x(1)=48.154 x(2)=11.769 x(3)=30.000 y=95.423
regression coeffi b(i):
b(0)= 1.439958 b(1)= 0.000000 b(2)= 0.000000 b(3)=-0.613954 b(4)=103.097382
standard partial sum of square of
regression for x(i) and sum of
square of residuals:
v(0)=-2.979291e-001 v(1)=9.864403e-003 v(2)=8.810045e-003 v(3)=-4.385230e-001
q=7.476211e+001
standard deviation of regression
coeffi and regression equation:
s(0)=1.384166e-001 s(1)=0.000000e+000 s(2)=0.000000e+000 s(3)=4.864455e-002
s=2.734266e+000
multi-correlation coeffi c is:9.861395e-001
the f value=1.766270e+002
estimated values and residuals:
ye(0)=7.633987e+001 yr(0)=2.160128e+000
ye(1)=7.261175e+001 yr(1)=1.688249e+000
ye(2)=1.066579e+002 yr(2)=-2.357850e+000
ye(3)=9.008110e+001 yr(3)=-2.481102e+000
ye(4)=9.291662e+001 yr(4)=2.983380e+000
ye(5)=1.054299e+002 yr(5)=3.770057e+000
ye(6)=1.037335e+002 yr(6)=-1.033535e+000
ye(7)=7.752338e+001 yr(7)=-5.023380e+000
ye(8)=9.247032e+001 yr(8)=6.296816e-001
ye(9)=1.173737e+002 yr(9)=-1.473711e+000
ye(10)=8.366292e+001 yr(10)=1.370834e-001
ye(11)=1.115695e+002 yr(11)=1.730521e+000
ye(12)=1.101295e+002 yr(12)=-7.295210e-001
matrix r:
1.064105e+000 -1.088321e-002 -8.692506e-001 2.611794e-001 5.630523e-001
1.088321e-002 5.324726e-002 -1.193945e-001 9.756262e-001 2.291839e-002
8.692506e-001 -1.193945e-001 2.890506e-001 1.838163e-001 -5.046334e-002
2.611794e-001 -9.756262e-001 -1.838163e-001 1.064105e+000 -6.831066e-001
-5.630523e-001 2.291839e-002 -5.046334e-002 6.831066e-001 2.752895e-002
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -