⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mandelbrot.pde

📁 This is processing for java examples.
💻 PDE
字号:
/** * The Mandelbrot Set * by Daniel Shiffman.   *  * Simple rendering of the Mandelbrot set. */ // Establish a range of values on the complex plane// A different range will allow us to "zoom" in or out on the fractal// float xmin = -1.5; float ymin = -.1; float wh = 0.15;float xmin = -2.5; float ymin = -2; float wh = 4;void setup() {  size(200, 200);  noLoop();  background(255);}void draw() {  loadPixels();    // Maximum number of iterations for each point on the complex plane  int maxiterations = 200;  // x goes from xmin to xmax  float xmax = xmin + wh;  // y goes from ymin to ymax  float ymax = ymin + wh;    // Calculate amount we increment x,y for each pixel  float dx = (xmax - xmin) / (width);  float dy = (ymax - ymin) / (height);  // Start y  float y = ymin;  for(int j = 0; j < height; j++) {    // Start x    float x = xmin;    for(int i = 0;  i < width; i++) {            // Now we test, as we iterate z = z^2 + cm does z tend towards infinity?      float a = x;      float b = y;      int n = 0;      while (n < maxiterations) {        float aa = a * a;        float bb = b * b;        float twoab = 2.0 * a * b;        a = aa - bb + x;        b = twoab + y;        // Infinty in our finite world is simple, let's just consider it 16        if(aa + bb > 16.0) {          break;  // Bail        }        n++;      }            // We color each pixel based on how long it takes to get to infinity      // If we never got there, let's pick the color black      if (n == maxiterations) {        pixels[i+j*width] = 0;      } else {        // Gosh, we could make fancy colors here if we wanted        pixels[i+j*width] = color(n*16 % 255);        }      x += dx;    }    y += dy;  }  updatePixels();}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -