📄 avc.c
字号:
* * Look up an AVC entry that is valid for the * @requested permissions between the SID pair * (@ssid, @tsid), interpreting the permissions * based on @tclass. If a valid AVC entry exists, * then this function return the avc_node. * Otherwise, this function returns NULL. */static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested){ struct avc_node *node; avc_cache_stats_incr(lookups); node = avc_search_node(ssid, tsid, tclass); if ( node && ((node->ae.avd.decided & requested) == requested) ) { avc_cache_stats_incr(hits); goto out; } node = NULL; avc_cache_stats_incr(misses);out: return node;}static int avc_latest_notif_update(int seqno, int is_insert){ int ret = 0; static DEFINE_SPINLOCK(notif_lock); unsigned long flag; spin_lock_irqsave(¬if_lock, flag); if ( is_insert ) { if ( seqno < avc_cache.latest_notif ) { printk(KERN_WARNING "avc: seqno %d < latest_notif %d\n", seqno, avc_cache.latest_notif); ret = -EAGAIN; } } else { if ( seqno > avc_cache.latest_notif ) avc_cache.latest_notif = seqno; } spin_unlock_irqrestore(¬if_lock, flag); return ret;}/** * avc_insert - Insert an AVC entry. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @ae: AVC entry * * Insert an AVC entry for the SID pair * (@ssid, @tsid) and class @tclass. * The access vectors and the sequence number are * normally provided by the security server in * response to a security_compute_av() call. If the * sequence number @ae->avd.seqno is not less than the latest * revocation notification, then the function copies * the access vectors into a cache entry, returns * avc_node inserted. Otherwise, this function returns NULL. */static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae){ struct avc_node *pos, *node = NULL; int hvalue; unsigned long flag; if ( avc_latest_notif_update(ae->avd.seqno, 1) ) goto out; node = avc_alloc_node(); if ( node ) { hvalue = avc_hash(ssid, tsid, tclass); avc_node_populate(node, ssid, tsid, tclass, ae); spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag); list_for_each_entry(pos, &avc_cache.slots[hvalue], list) { if ( pos->ae.ssid == ssid && pos->ae.tsid == tsid && pos->ae.tclass == tclass ) { avc_node_replace(node, pos); goto found; } } list_add_rcu(&node->list, &avc_cache.slots[hvalue]);found: spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag); }out: return node;}/** * avc_audit - Audit the granting or denial of permissions. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions * @avd: access vector decisions * @result: result from avc_has_perm_noaudit * @a: auxiliary audit data * * Audit the granting or denial of permissions in accordance * with the policy. This function is typically called by * avc_has_perm() after a permission check, but can also be * called directly by callers who use avc_has_perm_noaudit() * in order to separate the permission check from the auditing. * For example, this separation is useful when the permission check must * be performed under a lock, to allow the lock to be released * before calling the auditing code. */void avc_audit(u32 ssid, u32 tsid, u16 tclass, u32 requested, struct av_decision *avd, int result, struct avc_audit_data *a){ struct domain *d = current->domain; u32 denied, audited; denied = requested & ~avd->allowed; if ( denied ) { audited = denied; if ( !(audited & avd->auditdeny) ) return; } else if ( result ) { audited = denied = requested; } else { audited = requested; if ( !(audited & avd->auditallow) ) return; } printk("avc: %s ", denied ? "denied" : "granted"); avc_dump_av(tclass, audited); printk(" for "); if ( a && a->d ) d = a->d; if ( d ) printk("domid=%d", d->domain_id); printk("\n"); avc_dump_query(ssid, tsid, tclass); printk("\n");}/** * avc_add_callback - Register a callback for security events. * @callback: callback function * @events: security events * @ssid: source security identifier or %SECSID_WILD * @tsid: target security identifier or %SECSID_WILD * @tclass: target security class * @perms: permissions * * Register a callback function for events in the set @events * related to the SID pair (@ssid, @tsid) and * and the permissions @perms, interpreting * @perms based on @tclass. Returns %0 on success or * -%ENOMEM if insufficient memory exists to add the callback. */int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid, u16 tclass, u32 perms, u32 *out_retained), u32 events, u32 ssid, u32 tsid, u16 tclass, u32 perms){ struct avc_callback_node *c; int rc = 0; c = xmalloc(struct avc_callback_node); if ( !c ) { rc = -ENOMEM; goto out; } c->callback = callback; c->events = events; c->ssid = ssid; c->tsid = tsid; c->perms = perms; c->next = avc_callbacks; avc_callbacks = c;out: return rc;}static inline int avc_sidcmp(u32 x, u32 y){ return (x == y || x == SECSID_WILD || y == SECSID_WILD);}/** * avc_update_node Update an AVC entry * @event : Updating event * @perms : Permission mask bits * @ssid,@tsid,@tclass : identifier of an AVC entry * * if a valid AVC entry doesn't exist,this function returns -ENOENT. * if kmalloc() called internal returns NULL, this function returns -ENOMEM. * otherwise, this function update the AVC entry. The original AVC-entry object * will release later by RCU. */static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass){ int hvalue, rc = 0; unsigned long flag; struct avc_node *pos, *node, *orig = NULL; node = avc_alloc_node(); if ( !node ) { rc = -ENOMEM; goto out; } hvalue = avc_hash(ssid, tsid, tclass); spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag); list_for_each_entry(pos, &avc_cache.slots[hvalue], list) { if ( ssid==pos->ae.ssid && tsid==pos->ae.tsid && tclass==pos->ae.tclass ) { orig = pos; break; } } if ( !orig ) { rc = -ENOENT; avc_node_kill(node); goto out_unlock; } /* * Copy and replace original node. */ avc_node_populate(node, ssid, tsid, tclass, &orig->ae); switch ( event ) { case AVC_CALLBACK_GRANT: node->ae.avd.allowed |= perms; break; case AVC_CALLBACK_TRY_REVOKE: case AVC_CALLBACK_REVOKE: node->ae.avd.allowed &= ~perms; break; case AVC_CALLBACK_AUDITALLOW_ENABLE: node->ae.avd.auditallow |= perms; break; case AVC_CALLBACK_AUDITALLOW_DISABLE: node->ae.avd.auditallow &= ~perms; break; case AVC_CALLBACK_AUDITDENY_ENABLE: node->ae.avd.auditdeny |= perms; break; case AVC_CALLBACK_AUDITDENY_DISABLE: node->ae.avd.auditdeny &= ~perms; break; } avc_node_replace(node, orig);out_unlock: spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);out: return rc;}/** * avc_ss_reset - Flush the cache and revalidate migrated permissions. * @seqno: policy sequence number */int avc_ss_reset(u32 seqno){ struct avc_callback_node *c; int i, rc = 0; unsigned long flag; struct avc_node *node; for ( i = 0; i < AVC_CACHE_SLOTS; i++ ) { spin_lock_irqsave(&avc_cache.slots_lock[i], flag); list_for_each_entry(node, &avc_cache.slots[i], list) avc_node_delete(node); spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag); } for ( c = avc_callbacks; c; c = c->next ) { if ( c->events & AVC_CALLBACK_RESET ) { rc = c->callback(AVC_CALLBACK_RESET, 0, 0, 0, 0, NULL); if ( rc ) goto out; } } avc_latest_notif_update(seqno, 0);out: return rc;}/** * avc_has_perm_noaudit - Check permissions but perform no auditing. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions, interpreted based on @tclass * @avd: access vector decisions * * Check the AVC to determine whether the @requested permissions are granted * for the SID pair (@ssid, @tsid), interpreting the permissions * based on @tclass, and call the security server on a cache miss to obtain * a new decision and add it to the cache. Return a copy of the decisions * in @avd. Return %0 if all @requested permissions are granted, * -%EACCES if any permissions are denied, or another -errno upon * other errors. This function is typically called by avc_has_perm(), * but may also be called directly to separate permission checking from * auditing, e.g. in cases where a lock must be held for the check but * should be released for the auditing. */int avc_has_perm_noaudit(u32 ssid, u32 tsid, u16 tclass, u32 requested, struct av_decision *avd){ struct avc_node *node; struct avc_entry entry, *p_ae; int rc = 0; u32 denied; rcu_read_lock(); node = avc_lookup(ssid, tsid, tclass, requested); if ( !node ) { rcu_read_unlock(); rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd); if ( rc ) goto out; rcu_read_lock(); node = avc_insert(ssid,tsid,tclass,&entry); } p_ae = node ? &node->ae : &entry; if ( avd ) memcpy(avd, &p_ae->avd, sizeof(*avd)); denied = requested & ~(p_ae->avd.allowed); if ( !requested || denied ) { if ( flask_enforcing ) rc = -EACCES; else if ( node ) avc_update_node(AVC_CALLBACK_GRANT,requested, ssid,tsid,tclass); } rcu_read_unlock();out: return rc;}/** * avc_has_perm - Check permissions and perform any appropriate auditing. * @ssid: source security identifier * @tsid: target security identifier * @tclass: target security class * @requested: requested permissions, interpreted based on @tclass * @auditdata: auxiliary audit data * * Check the AVC to determine whether the @requested permissions are granted * for the SID pair (@ssid, @tsid), interpreting the permissions * based on @tclass, and call the security server on a cache miss to obtain * a new decision and add it to the cache. Audit the granting or denial of * permissions in accordance with the policy. Return %0 if all @requested * permissions are granted, -%EACCES if any permissions are denied, or * another -errno upon other errors. */int avc_has_perm(u32 ssid, u32 tsid, u16 tclass, u32 requested, struct avc_audit_data *auditdata){ struct av_decision avd; int rc; rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, &avd); avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata); return rc;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -