📄 rs_enc4.m
字号:
function R = RS_ENC4(code,n,k,g,field)
%R = RS_ENC4(code,n,k,g,field)
%R is the parity block that is included
% m is the number of bits of each symbol
% n = 2^m-1 => the number of symbols transmitted
% k = the number of code symbols that is going to be codes to a n symbol message
% t = the number of errors that can be found + corrected
%Tripple-error-correcting Reed-Solomon code with symbols from GF(2^4)
% Lin & Costello p.175 and article: Reed_Solomon Codes by Joel Sylvester
%generator polynomial
%field = gftuple([-1:2^m-2]', m, 2);
%p = 2; m = 4;
%primpoly = [0 0 -Inf -Inf 0];
%field = gftuple([-1:p^m-2]',primpoly,p);
%Lin + Costello, p.171
%Encoder (Article)
%shift codeword by X^(n-k)
for ii = 1:n-k
shiftpol(ii) = -Inf;
end
shiftpol(n-k+1) = 0;
shiftcode = gfconv(code,shiftpol,field);
%divide shifted codeword by g(x)
[Q, R] = GFDECONV(shiftcode, g, field);
while length(R) < n-k
R = [R -inf];
end
%for ii = 1:n-k
% CON(ii) = -Inf;
% if length(R) >= ii
% CON(ii) = gfadd(R(ii),CON(ii),field);
% end
%end
%%concatenate the parity to the data
%message = [CON code];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -