⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 usaco 1_5_2 prime palindromes 题解_leokan的blog.mht

📁 美国USACO题库源程序
💻 MHT
📖 第 1 页 / 共 5 页
字号:
<DIV class=3Ddate>2008=C4=EA01=D4=C226=C8=D5 =D0=C7=C6=DA=C1=F9 =
16:42</DIV>
<TABLE style=3D"TABLE-LAYOUT: fixed">
  <TBODY>
  <TR>
    <TD>
      <DIV class=3Dcnt>
      <H2>USACO 1.5.2 Prime Palindromes</H2>
      <DIV class=3Dt_msgfont>Prime Palindromes<BR>The number 151 is a =
prime=20
      palindrome because it is both a prime number and a palindrome (it =
is the=20
      same number when read forward as backward). Write a program that =
finds all=20
      prime palindromes in the range of two supplied numbers a and b (5 =
&lt;=3D a=20
      &lt; b &lt;=3D 100,000,000); both a and b are considered to be =
within the=20
      range . <BR><BR>PROGRAM NAME: pprime<BR>INPUT FORMAT<BR>Line=20
      1:&nbsp;&nbsp; Two integers, a and b <BR><BR>SAMPLE INPUT (file =
pprime.in)=20
      <BR>5 500<BR><BR>OUTPUT FORMAT<BR>The <SPAN class=3Dt_tag=20
      href=3D"tag.php?name=3Dlis">lis</SPAN>t of palindromic primes in =
numerical=20
      order, one per line. <BR>SAMPLE OUTPUT (file=20
      =
pprime.out)<BR>5<BR>7<BR>11<BR>101<BR>131<BR>151<BR>181<BR>191<BR>313<BR>=
353<BR>373<BR>383<BR><BR>HINTS=20
      (use them carefully!)<BR>&nbsp;&nbsp; HINT 1 &nbsp;&nbsp; =
&nbsp;&nbsp;=20
      HINT 2 <BR><BR><BR><BR>Prime =
Palindromes<BR><BR>=BB=D8=CE=C4=D6=CA=CA=FD<BR><BR>=D2=EB by tim=20
      =
green<BR><BR>=D2=F2=CE=AA151=BC=B4=CA=C7=D2=BB=B8=F6=D6=CA=CA=FD=D3=D6=CA=
=C7=D2=BB=B8=F6=BB=D8=CE=C4=CA=FD(=B4=D3=D7=F3=B5=BD=D3=D2=BA=CD=B4=D3=D3=
=D2=B5=BD=D7=F3=CA=C7=BF=B4=D2=BB=D1=F9=B5=C4)=A3=AC=CB=F9=D2=D4 151=20
      =
=BA=C5=CA=C7=BB=D8=CE=C4=D6=CA=CA=FD=A1=A3<BR>=D0=B4=D2=BB=B8=F6=B3=CC=D0=
=F2=C0=B4=D5=D2=B3=F6=B7=B6=CE=A7[a,b](5 &lt;=3D a &lt; b &lt;=3D=20
      =
100,000,000)=BC=E4=B5=C4=CB=F9=D3=D0=BB=D8=CE=C4=D6=CA=CA=FD;<BR><BR>PROG=
RAM NAME: pprime<BR><BR>INPUT FORMAT<BR>=B5=DA=20
      1 =D0=D0: =B6=FE=B8=F6=D5=FB=CA=FD a =BA=CD b .<BR><BR>SAMPLE =
INPUT (file pprime.in) <BR>5=20
      500<BR><BR>OUTPUT =
FORMAT<BR>=CA=E4=B3=F6=D2=BB=B8=F6=BB=D8=CE=C4=D6=CA=CA=FD=B5=C4=C1=D0=B1=
=ED=A3=AC=D2=BB=D0=D0=D2=BB=B8=F6=A1=A3<BR><BR>SAMPLE OUTPUT (file=20
      =
pprime.out)<BR>5<BR>7<BR>11<BR>101<BR>131<BR>151<BR>181<BR>191<BR>313<BR>=
353<BR>373<BR>383</DIV>
      <DIV align=3Dleft>
      <HR>

      <P></P>
      <P><STRONG>USACO 1.5.2 Prime=20
      =
Palindromes<BR>=CC=E1=BD=BB=B4=CE=CA=FD:1=B4=CE<BR><BR>=D3=D6=CA=C7=D2=BB=
=CC=E2=C3=B6=BE=D9=CB=D1=CB=F7=B5=C4=CC=E2=C4=BF=A3=AC=CF=C8=C9=FA=B3=C9s=
qrt(100,000,000)=D2=B2=BE=CD=CA=C710000=D2=D4=C4=DA=B5=C4=D6=CA=CA=FD=A3=AC=
=D5=E2=D1=F9=C5=D0=B6=CF=CA=C7=B7=F1=D6=CA=CA=FD=CA=B1=D6=BB=D0=E8=D2=AA=C4=
=C3=D5=E2=D0=A9=CA=FD=C0=B4=B3=FD=BE=CD=D0=D0=C1=CB,=D0=A1=BC=F4=D2=BB=CF=
=C2,=BF=AA=CD=B7=D2=BB=B8=F6=CA=FD=CA=C7=C5=BC=CA=FD=B5=C4=B2=BB=BF=BC=C2=
=C7,=B3=FD11=D2=D4=CD=E2=BB=D8=CE=C4=D6=CA=CA=FD=B6=BC=CA=C7=C6=E6=CA=FD=CE=
=BB=B5=C4,=D2=F2=CE=AA=C6=E6=CA=FD=CE=BB=D6=AE=BA=CD=D3=EB=C5=BC=CA=FD=CE=
=BB=D6=AE=BA=CD=B5=C4=B2=EE=CE=AA11=B5=C4=B1=B6=CA=FD=B5=C4=CA=FD=C4=DC=D5=
=FB=B3=FD11,=B6=F8=C5=BC=CA=FD=CE=BB=B5=C4=BB=D8=CE=C4=CA=FD,=C2=FA=D7=E3=
=D6=AE=C7=B0=CC=F5=BC=FE(=3D0).=C8=BB=BA=F3=C3=B6=BE=D910^[(wa=20
      div 2)] =B5=BD10^index[(wb div 2)+2]-1=20
      =
=D6=D0=B5=C4=CA=FDx=D7=F7=CE=AA=C0=E0=CB=C6=D3=DAxyx=D5=E2=D1=F9=B5=C4=CA=
=FD=C0=B4=C5=D0=B6=CF=CA=C7=B7=F1=D6=CA=CA=FD.&nbsp;&nbsp;</STRONG></P>
      <P><STRONG>{<BR>TASK:pprime<BR>LANG:PASCAL<BR>}<BR>program=20
      pprime;<BR>const<BR>&nbsp;&nbsp;&nbsp; =
maxn=3D10000;<BR>&nbsp;&nbsp;&nbsp;=20
      index:array[0..9] of=20
      =
qword=3D(1,1,10,100,1000,10000,100000,1000000,10000000,100000000);<BR>var=
<BR>&nbsp;&nbsp;&nbsp;=20
      isprime:array[2..maxn] of boolean;<BR>&nbsp;&nbsp;&nbsp;=20
      prime:array[0..1500] of integer;<BR>&nbsp;&nbsp;&nbsp;=20
      a,b,sqrtb,i:longint;<BR>procedure =
init;<BR>var<BR>&nbsp;&nbsp;&nbsp;=20
      c:longint;<BR>begin<BR>&nbsp;&nbsp;&nbsp;=20
      assign(input,'pprime.in');reset(input);<BR>&nbsp;&nbsp;&nbsp;=20
      readln(a,b);<BR>&nbsp;&nbsp;&nbsp; if a&gt;b=20
      then<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
begin<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;=20
      =
c:=3Da;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&n=
bsp;=20
      =
a:=3Db;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&n=
bsp;=20
      b:=3Dc;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      end;<BR>&nbsp;&nbsp;&nbsp; =
sqrtb:=3Dtrunc(sqrt(b));<BR>&nbsp;&nbsp;&nbsp;=20
      close(input);<BR>end;<BR>procedure=20
      =
initprime;{=C9=FA=B3=C9&lt;10000=B5=C4=D6=CA=CA=FD}<BR>var<BR>&nbsp;&nbsp=
;&nbsp;=20
      i,j:integer;<BR>begin<BR>&nbsp;&nbsp;&nbsp;=20
      fillchar(isprime,sizeof(isprime),true);<BR>&nbsp;&nbsp;&nbsp; for =
i:=3D2 to=20
      100 do<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; if isprime[i] =

      =
then<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;=20
      for j:=3D2 to (maxn div i)=20
      =
do<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&=
nbsp;&nbsp;&nbsp;&nbsp;=20
      isprime[j*i]:=3Dfalse;<BR>&nbsp;&nbsp;&nbsp;=20
      fillchar(prime,sizeof(prime),0);<BR>&nbsp;&nbsp;&nbsp; for i:=3D2 =
to maxn=20
      do<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; if isprime[i]=20
      =
then<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;=20
      =
begin<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
inc(prime[0]);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&=
nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
prime[prime[0]]:=3Di;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=
&nbsp;&nbsp;&nbsp;=20
      end;<BR>end;<BR>procedure=20
      =
check(x:longint);{=BC=EC=B2=E9=CA=C7=B7=F1=CB=D8=CA=FD}<BR>var<BR>&nbsp;&=
nbsp;&nbsp;=20
      i:integer;<BR>&nbsp;&nbsp;&nbsp;=20
      isprime:boolean;<BR>begin<BR>&nbsp;&nbsp;&nbsp;=20
      isprime:=3Dtrue;<BR>&nbsp;&nbsp;&nbsp; for i:=3D1 to prime[0]=20
      do<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
begin<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;=20
      if prime[i]&gt;trunc(sqrt(x))+1 then=20
      =
break;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nb=
sp;=20
      if x mod prime[i]=3D0=20
      =
then<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
begin<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
isprime:=3Dfalse;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
break;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nb=
sp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      end;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      end;<BR>&nbsp;&nbsp;&nbsp; if isprime then=20
      writeln(x);<BR>end;<BR>procedure =
make;<BR>var<BR>&nbsp;&nbsp;&nbsp;=20
      i,num:longint;<BR>&nbsp;&nbsp;&nbsp;=20
      j,wa,wb,k,len,code:integer;<BR>&nbsp;&nbsp;&nbsp;=20
      st,stt:string;<BR>begin<BR>&nbsp;&nbsp;&nbsp;=20
      assign(output,'pprime.out');rewrite(output);<BR>&nbsp;&nbsp;&nbsp; =
for=20
      i:=3Da to 11 do<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; if=20
      isprime[i]and(i&lt;b) then writeln(i);<BR>&nbsp;&nbsp;&nbsp;=20
      =
wa:=3Dtrunc(ln(a)/ln(10))+1;{a=B5=C4=CE=BB=CA=FD}<BR>&nbsp;&nbsp;&nbsp;=20
      =
wb:=3Dtrunc(ln(b)/ln(10))+1;{b=B5=C4=CE=BB=CA=FD}<BR>&nbsp;&nbsp;&nbsp; =
for i:=3Dindex[(wa=20
      div 2)] to index[(wb div 2)+2]-1=20
      do<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
begin<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;=20
      =
str(i,st);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;&nbsp;=20
      =
len:=3Dlength(st);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nb=
sp;&nbsp;&nbsp;=20
      if not odd(ord(st[1])-48) then=20
      =
continue;{=BC=F4=D6=A6=D2=BB=A3=AC=C1=ED=CD=E2=C6=E6=CA=FD=CA=FD=CE=BB=C4=
=C7=B8=F6=BC=F4=D6=A6=D6=B1=BD=D3+=C1=CB=D6=D0=BC=E4=CA=FD=BC=F4=C1=CB}<B=
R>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      for j:=3D0 to 9=20
      =
do<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&=
nbsp;&nbsp;&nbsp;&nbsp;=20
      =
begin<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
stt:=3Dst+chr(j+48);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&=
nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      for k:=3Dlen downto 1=20
      =
do<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&=
nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
stt:=3Dstt+st[k];<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;&nbsp;&nbsp;=20
      =
val(stt,num,code);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nb=
sp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      if (num&gt;=3Da)and(num&lt;=3Db)=20
      =
then<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=
=20
      =
check(num);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      end;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      end;<BR>&nbsp;&nbsp;&nbsp; close(output);<BR>end;</STRONG></P>
      <P><STRONG>begin<BR>&nbsp;&nbsp;&nbsp; init;<BR>&nbsp;&nbsp;&nbsp; =

      initprime;<BR>&nbsp;&nbsp;&nbsp; =
make;<BR>end.<BR></STRONG></P><STRONG>
      <HR>
      </STRONG>
      =
<P><STRONG>usaco=B5=C4=B7=D6=CE=F6=B3=CC=D0=F2=BC=F2=B6=CC=B0=A1~~</STRON=
G></P><STRONG>
      <CENTER><STRONG><FONT size=3D7>Prime =
Palindromes</FONT></STRONG><BR>Russ Cox=20
      </CENTER>
      <P>The main problem here is that we need some way to generate =
palindromes.=20
      Since there are only about 10,000 palindromes less than =
100,000,000, we=20
      can just test each one to see if it is prime and in the range.</P>
      <P>To generate a palindrome, we start with the first half and =
reverse it.=20
      The trick is that we can repeat the middle character or not repeat =
the=20
      middle character. I call a palindrome with a repeated middle =
character=20
      "even" (because it is of even length) and one without "odd". So =
from the=20
      string "123", we can generate the even palindrome "123321" or the =
odd=20
      palindrome "12321".</P>
      <P>We can generate all palindromes by doing the following:</P>
      <UL>
        <LI>length 1: generate odd palindromes using 1..9=20
        <LI>length 2: generate even palindromes using 1..9=20
        <LI>length 3: generate odd palindromes using 10..99=20
        <LI>length 4: generate even palindromes using 10..99=20
        <LI>... </LI></UL>
      <P>The "generate" function does exactly this, using "genoddeven" =
to first=20
      generate the odd palindromes for a range and then the even =
ones.</P>
      <P>The "gen" function generates an even or odd palindrome for a =
number by=20
      converting it to a string, making a palindrome, and converting the =

      resulting string back to a number. Then it tests to see if the =
number is=20
      in the range and prime. If so, it is printed.</P>
      <P>We could speed this up in a number of ways: use a faster =
primality=20
      test, don't generate palindromes past "b", etc. But this is =
already plenty=20
      fast, and doing such things makes the program more complex and =
might=20
      introduce bugs.</P><PRE>#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include &lt;assert.h&gt;
#include &lt;stdlib.h&gt;

FILE *fout;
long a, b;

int
isprime(long n)
{
    long i;

    if(n =3D=3D 2)
 return 1;

    if(n%2 =3D=3D 0)
 return 0;

    for(i=3D3; i*i &lt;=3D n; i+=3D2)
 if(n%i =3D=3D 0)
     return 0;

    return 1;
}

void
gen(int i, int isodd)
{
    char buf[30];
    char *p, *q;
    long n;

    sprintf(buf, "%d", i);

    p =3D buf+strlen(buf);
    q =3D p - isodd;

    while(q &gt; buf)
 *p++ =3D *--q;
    *p =3D '\0';

    n =3D atol(buf);
    if(a &lt;=3D n &amp;&amp; n &lt;=3D b &amp;&amp; isprime(n))
 fprintf(fout, "%ld\n", n);
}

void
genoddeven(int lo, int hi)
{
    int i;

    for(i=3Dlo; i&lt;=3Dhi; i++)
        gen(i, 1);

    for(i=3Dlo; i&lt;=3Dhi; i++)
        gen(i, 0);
}

void
generate(void)
{
    genoddeven(1, 9);
    genoddeven(10, 99);
    genoddeven(100, 999);
    genoddeven(1000, 9999);
}

void
main(void)
{
    FILE *fin;

    fin =3D fopen("pprime.in", "r");
    fout =3D fopen("pprime.out", "w");
    assert(fin !=3D NULL &amp;&amp; fout !=3D NULL);

    fscanf(fin, "%ld %ld", &amp;a, &amp;b);

    generate();
    exit (0);
}</PRE>
      <P><STRONG>master_zed writes:</STRONG></P>
      <P>The problem can be simplified slightly by noticing that any =
even=20
      palindrome is divisible by 11. Therefore, 11 is the ONLY even =
prime=20
      palindrome. This eliminates the need to deal with 2 =
cases:</P><PRE>#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include &lt;assert.h&gt;
#include &lt;stdlib.h&gt;

FILE *fout;
long a, b;

int
isprime(long n)
{
    long i;

    if(n =3D=3D 2)
        return 1;

    if(n%2 =3D=3D 0)
        return 0;

    for(i=3D3; i*i &lt;=3D n; i+=3D2)
        if(n%i =3D=3D 0)
                return 0;

    return 1;
}

void
gen(int i)
{
    char buf[30];
    char *p, *q;
    long n;

    sprintf(buf, "%d", i);

    p =3D buf+strlen(buf);
    q =3D p - 1;

    while(q &gt; buf)
            *p++ =3D *--q;
    *p =3D '\0';

    n =3D atol(buf);
    if(a &lt;=3D n &amp;&amp; n &lt;=3D b &amp;&amp; isprime(n))
        fprintf(fout, "%ld\n", n);
}

void
generate(void)
{
    int i;
    for (i =3D 1; i &lt;=3D 9; i++)
      gen(i);

    if(a &lt;=3D 11 &amp;&amp; 11 &lt;=3D b)
      fprintf(fout, "11\n");

    for (i =3D 10; i &lt;=3D 9999; i++)
      gen(i);
}

void
main(void)
{
    FILE *fin;

    fin =3D fopen("pprime.in", "r");
    fout =3D fopen("pprime.out", "w");
    assert(fin !=3D NULL &amp;&amp; fout !=3D NULL);

    fscanf(fin, "%ld %ld", &amp;a, &amp;b);

    generate();
    exit (0);
}</PRE>
      <P><STRONG>Coach Rob writes:</STRONG></P>
      <P>I guess I have a slightly different coding style than the =
previous two=20
      solutions. This is the same idea but coded a bit more tightly =

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -