⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 usaco 4_2_1 drainage ditches 题解_leokan的blog.mht

📁 美国USACO题库源程序
💻 MHT
📖 第 1 页 / 共 5 页
字号:
href=3D"http://hi.baidu.com/leokan/album">=CF=E0=B2=E1</A><SPAN>|</SPAN><=
A=20
href=3D"http://hi.baidu.com/leokan/profile">=B8=F6=C8=CB=B5=B5=B0=B8</A> =
<SPAN>|</SPAN><A=20
href=3D"http://hi.baidu.com/leokan/friends">=BA=C3=D3=D1</A> =
</DIV></DIV>
<DIV class=3Dstage>
<DIV class=3Dstagepad>
<DIV style=3D"WIDTH: 100%">
<TABLE class=3Dmodth cellSpacing=3D0 cellPadding=3D0 width=3D"100%" =
border=3D0>
  <TBODY>
  <TR>
    <TD class=3Dmodtl width=3D7>&nbsp;</TD>
    <TD class=3Dmodtc noWrap>
      <DIV class=3Dmodhead><SPAN =
class=3Dmodtit>=B2=E9=BF=B4=CE=C4=D5=C2</SPAN></DIV></TD>
    <TD class=3Dmodtc noWrap align=3Dright></TD>
    <TD class=3Dmodtr width=3D7>&nbsp;</TD></TR></TBODY></TABLE>
<DIV class=3Dmodbox id=3Dm_blog>
<DIV class=3Dtit>USACO 4.2.1 Drainage Ditches =CC=E2=BD=E2</DIV>
<DIV class=3Ddate>2008=C4=EA02=D4=C222=C8=D5 =D0=C7=C6=DA=CE=E5 =
20:07</DIV>
<TABLE style=3D"TABLE-LAYOUT: fixed">
  <TBODY>
  <TR>
    <TD>
      <DIV class=3Dcnt>
      <H2>USACO 4.2.1 Drainage Ditches</H2>
      <DIV class=3Dt_msgfont>Drainage Ditches<BR>Hal Burch <BR>Every =
time it rains=20
      on Farmer John's fields, a pond forms over Bessie's favorite =
clover patch.=20
      This means that the clover is covered by water for awhile and =
takes quite=20
      a long time to regrow. Thus, Farmer John has built a set of =
drainage=20
      ditches so that Bessie's clover patch is never covered in water. =
Instead,=20
      the water is drained to a nearby stream. Being an ace engineer, =
Farmer=20
      John has also installed regulators at the beginning of each ditch, =
so he=20
      can control at what rate water flows into that ditch. =
<BR><BR>Farmer John=20
      knows not only how many gallons of water each ditch can transport =
per=20
      minute but also the exact layout of the ditches, which feed out of =
the=20
      pond and into each other and stream in a potentially complex =
network. Note=20
      however, that there can be more than one ditch between two =
intersections.=20
      <BR><BR>Given all this information, determine the maximum rate at =
which=20
      water can be transported out of the pond and into the stream. For =
any=20
      given ditch, water flows in only one direction, but there might be =
a way=20
      that water can flow in a circle. <BR><BR>PROGRAM NAME: =
ditch<BR>INPUT=20
      FORMAT<BR>Line 1:&nbsp;&nbsp; Two space-separated integers, N (0 =
&lt;=3D N=20
      &lt;=3D 200) and M (2 &lt;=3D M &lt;=3D 200). N is the number of =
ditches that=20
      Farmer John has dug. M is the number of intersections points for =
those=20
      ditches. Intersection 1 is the pond. Intersection point M is the=20
      stream.&nbsp;&nbsp;<BR>Line 2..N+1:&nbsp;&nbsp; Each of N lines =
contains=20
      three integers, Si, Ei, and Ci. Si and Ei (1 &lt;=3D Si, Ei =
&lt;=3D M)=20
      designate the intersections between which this ditch flows. Water =
will=20
      flow through this ditch from Si to Ei. Ci (0 &lt;=3D Ci &lt;=3D =
10,000,000) is=20
      the maximum rate at which water will flow through the=20
      ditch.&nbsp;&nbsp;<BR><BR>SAMPLE INPUT (file ditch.in) <BR>5 =
4<BR>1 2=20
      40<BR>1 4 20<BR>2 4 20<BR>2 3 30<BR>3 4 10<BR><BR>OUTPUT =
FORMAT<BR>One=20
      line with a single integer, the maximum rate at which water may =
emptied=20
      from the pond. <BR><BR>SAMPLE OUTPUT (file=20
      ditch.out)<BR>50<BR><BR><BR><BR>Drainage Ditches =
<BR><BR>=B2=DD=B5=D8=C5=C5=CB=AE <BR><BR>Hal=20
      Burch <BR><BR>=D2=EB by Felicia=20
      =
Crazy<BR><BR>=D4=DA=C5=A9=B7=F2=D4=BC=BA=B2=B5=C4=C5=A9=B3=A1=C9=CF=A3=AC=
=C3=BF=B7=EA=CF=C2=D3=EA=A3=AC=B1=B4=DC=E7=D7=EE=CF=B2=BB=B6=B5=C4=C8=FD=D2=
=B6=B2=DD=B5=D8=BE=CD=BB=FD=BE=DB=C1=CB=D2=BB=CC=B6=CB=AE=A1=A3=D5=E2=D2=E2=
=CE=B6=D7=C5=B2=DD=B5=D8=B1=BB=CB=AE=D1=CD=C3=BB=C1=CB=A3=AC=B2=A2=C7=D2=D0=
=A1=B2=DD=D2=AA=BC=CC=D0=F8=C9=FA=B3=A4=BB=B9=D2=AA=BB=A8=CF=E0=B5=B1=B3=A4=
=D2=BB=B6=CE=CA=B1=BC=E4=A1=A3=D2=F2=B4=CB=A3=AC=C5=A9=B7=F2=D4=BC=BA=B2=D0=
=DE=BD=A8=C1=CB=D2=BB=CC=D7=C5=C5=CB=AE=CF=B5=CD=B3=C0=B4=CA=B9=B1=B4=DC=E7=
=B5=C4=B2=DD=B5=D8=C3=E2=B3=FD=B1=BB=B4=F3=CB=AE=D1=CD=C3=BB=B5=C4=B7=B3=C4=
=D5=A3=A8=B2=BB=D3=C3=B5=A3=D0=C4=A3=AC=D3=EA=CB=AE=BB=E1=C1=F7=CF=F2=B8=BD=
=BD=FC=B5=C4=D2=BB=CC=F5=D0=A1=CF=AA=A3=A9=A1=A3=D7=F7=CE=AA=D2=BB=C3=FB=D2=
=BB=C1=F7=B5=C4=BC=BC=CA=A6=A3=AC=C5=A9=B7=F2=D4=BC=BA=B2=D2=D1=BE=AD=D4=DA=
=C3=BF=CC=F5=C5=C5=CB=AE=B9=B5=B5=C4=D2=BB=B6=CB=B0=B2=C9=CF=C1=CB=BF=D8=D6=
=C6=C6=F7=A3=AC=D5=E2=D1=F9=CB=FB=BF=C9=D2=D4=BF=D8=D6=C6=C1=F7=C8=EB=C5=C5=
=CB=AE=B9=B5=B5=C4=CB=AE=C1=F7=C1=BF=A1=A3=20
      =
<BR><BR>=C5=A9=B7=F2=D4=BC=BA=B2=D6=AA=B5=C0=C3=BF=D2=BB=CC=F5=C5=C5=CB=AE=
=B9=B5=C3=BF=B7=D6=D6=D3=BF=C9=D2=D4=C1=F7=B9=FD=B5=C4=CB=AE=C1=BF=A3=AC=BA=
=CD=C5=C5=CB=AE=CF=B5=CD=B3=B5=C4=D7=BC=C8=B7=B2=BC=BE=D6=A3=A8=C6=F0=B5=E3=
=CE=AA=CB=AE=CC=B6=B6=F8=D6=D5=B5=E3=CE=AA=D0=A1=CF=AA=B5=C4=D2=BB=D5=C5=CD=
=F8=A3=A9=A1=A3=D0=E8=D2=AA=D7=A2=D2=E2=B5=C4=CA=C7=A3=AC=D3=D0=D0=A9=CA=B1=
=BA=F2=B4=D3=D2=BB=B4=A6=B5=BD=C1=ED=D2=BB=B4=A6=B2=BB=D6=BB=D3=D0=D2=BB=CC=
=F5=C5=C5=CB=AE=B9=B5=A1=A3<BR><BR>=B8=F9=BE=DD=D5=E2=D0=A9=D0=C5=CF=A2=A3=
=AC=BC=C6=CB=E3=B4=D3=CB=AE=CC=B6=C5=C5=CB=AE=B5=BD=D0=A1=CF=AA=B5=C4=D7=EE=
=B4=F3=C1=F7=C1=BF=A1=A3=B6=D4=D3=DA=B8=F8=B3=F6=B5=C4=C3=BF=CC=F5=C5=C5=CB=
=AE=B9=B5=A3=AC=D3=EA=CB=AE=D6=BB=C4=DC=D1=D8=D7=C5=D2=BB=B8=F6=B7=BD=CF=F2=
=C1=F7=B6=AF=A3=AC=D7=A2=D2=E2=BF=C9=C4=DC=BB=E1=B3=F6=CF=D6=D3=EA=CB=AE=BB=
=B7=D0=CE=C1=F7=B6=AF=B5=C4=C7=E9=D0=CE=A1=A3<BR><BR>PROGRAM=20
      NAME:ditch<BR><BR>INPUT FORMAT<BR><BR>=B5=DA1=D0=D0: =
=C1=BD=B8=F6=D3=C3=BF=D5=B8=F1=B7=D6=BF=AA=B5=C4=D5=FB=CA=FDN (0 &lt;=3D =
N &lt;=3D=20
      200) =BA=CD M (2 &lt;=3D M &lt;=3D=20
      =
200)=A1=A3N=CA=C7=C5=A9=B7=F2=D4=BC=BA=B2=D2=D1=BE=AD=CD=DA=BA=C3=B5=C4=C5=
=C5=CB=AE=B9=B5=B5=C4=CA=FD=C1=BF=A3=ACM=CA=C7=C5=C5=CB=AE=B9=B5=BD=BB=B2=
=E6=B5=E3=B5=C4=CA=FD=C1=BF=A1=A3=BD=BB=B5=E31=CA=C7=CB=AE=CC=B6=A3=AC=BD=
=BB=B5=E3M=CA=C7=D0=A1=CF=AA=A1=A3 =
<BR>=B5=DA=B6=FE=D0=D0=B5=BD=B5=DAN+1=D0=D0:=20
      =C3=BF=D0=D0=D3=D0=C8=FD=B8=F6=D5=FB=CA=FD=A3=ACSi, Ei, =BA=CD =
Ci=A1=A3Si =BA=CD Ei (1 &lt;=3D Si, Ei &lt;=3D M) =
=D6=B8=C3=F7=C5=C5=CB=AE=B9=B5=C1=BD=B6=CB=B5=C4=BD=BB=B5=E3=A3=AC=D3=EA=CB=
=AE=B4=D3Si=20
      =C1=F7=CF=F2Ei=A1=A3Ci (0 &lt;=3D Ci &lt;=3D =
10,000,000)=CA=C7=D5=E2=CC=F5=C5=C5=CB=AE=B9=B5=B5=C4=D7=EE=B4=F3=C8=DD=C1=
=BF=A1=A3 <BR><BR>SAMPLE INPUT=20
      (file ditch.in)<BR><BR>5 4<BR>1 2 40<BR>1 4 20<BR>2 4 20<BR>2 3 =
30<BR>3 4=20
      10<BR><BR>OUTPUT =
FORMAT<BR><BR>=CA=E4=B3=F6=D2=BB=B8=F6=D5=FB=CA=FD=A3=AC=BC=B4=C5=C5=CB=AE=
=B5=C4=D7=EE=B4=F3=C1=F7=C1=BF=A1=A3<BR><BR>SAMPLE OUTPUT (file=20
      ditch.out)<BR><BR>50</DIV>
      <HR>

      <P><STRONG>USACO 4.2.1 Drainage =
Ditches<BR>=CC=E1=BD=BB=B4=CE=CA=FD:5=B4=CE</STRONG></P>
      =
<P><STRONG>=D2=D4=CE=AA=CB=FB=CA=C7=BC=F2=B5=A5=CD=BC,=D6=B1=BD=D3=B8=B3=D6=
=B5=C1=CB,=BA=F3=C0=B4=B6=D4=D7=C5=CA=FD=BE=DD=BF=B4=B2=C5=B7=A2=CF=D6=C1=
=BD=B8=F6=B5=E3=BF=C9=D2=D4=C1=AC=BD=D31=CC=F5=D2=D4=C9=CF=B5=C4=B1=DF,=D3=
=DA=CA=C7=B8=C4=BD=F8=C1=CB=CF=C2,ac.<BR>=BD=AB=D4=AD=CF=C8=CE=D2=D3=C3=B5=
=C4=D7=EE=B4=F3=C1=F7=B8=C4=CE=AA=C4=A3=BF=E9=BB=AF=C1=CB,=BE=CD=CA=C7=B1=
=E4=CE=AA=D2=BB=B8=F6=CB=E6=CA=B1=C4=DC=D3=C3=B5=C4=BA=AF=CA=FD,maxflow(v=
0,vm),=D7=EE=BD=FC=B8=C4=C4=A3=BF=E9=B8=C4=B5=C3=BA=DC=B6=E0,spfa(v0)=D6=AE=
=C0=E0=B5=C4...</STRONG></P>
      <P><STRONG>{<BR>TASK:ditch<BR>LANG:PASCAL<BR>}<BR>program=20
      ditch;<BR>const<BR>&nbsp;&nbsp;&nbsp;=20
      maxn=3D200;<BR>var<BR>&nbsp;&nbsp;&nbsp; =
n,m:integer;<BR>&nbsp;&nbsp;&nbsp;=20
      capacity:array[1..maxn,1..maxn] of qword;<BR>&nbsp;&nbsp;&nbsp;=20
      contact:array[1..maxn,0..maxn] of integer;<BR>function=20
      min(x,y:longint):longint;<BR>begin<BR>&nbsp;&nbsp;&nbsp; if x&gt;y =
then=20
      exit(y)<BR>&nbsp;&nbsp;&nbsp; else exit(x);<BR>end;<BR>procedure=20
      init;<BR>var<BR>&nbsp;&nbsp;&nbsp;=20
      i,x,y,capa:longint;<BR>begin<BR>&nbsp;&nbsp;&nbsp;=20
      assign(input,'ditch.in');reset(input);<BR>&nbsp;&nbsp;&nbsp;=20
      fillchar(capacity,sizeof(capacity),0);<BR>&nbsp;&nbsp;&nbsp;=20
      readln(n,m);<BR>&nbsp;&nbsp;&nbsp; for i:=3D1 to n=20
      do<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
begin<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;=20
      =
read(x,y,capa);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=
&nbsp;&nbsp;=20
      =
inc(capacity[x,y],capa);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nb=
sp;&nbsp;&nbsp;&nbsp;=20
      =
inc(contact[x,0]);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nb=
sp;&nbsp;&nbsp;=20
      =
contact[x,contact[x,0]]:=3Dy;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;=20
      end;<BR>&nbsp;&nbsp;&nbsp; close(input);<BR>end;<BR>function=20
      maxflow(v0,vm:integer):qword;<BR>var<BR>&nbsp;&nbsp;&nbsp;=20
      visit:array[1..maxn]of boolean;<BR>&nbsp;&nbsp;&nbsp;=20
      pre,flow:array[1..maxn] of qword;<BR>&nbsp;&nbsp;&nbsp;=20
      i,jump:longint;<BR>&nbsp;&nbsp;&nbsp;=20
      total,max,maxl,increse:qword;<BR>begin<BR>&nbsp;&nbsp;&nbsp;=20
      total:=3D0;<BR>&nbsp;&nbsp;&nbsp; while true=20
      do<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
begin<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;=20
      =
fillchar(visit,sizeof(visit),0);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&=
nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
fillchar(flow,sizeof(flow),0);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nb=
sp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
fillchar(pre,sizeof(pre),0);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
flow[v0]:=3Dmaxlongint;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;&nbsp;&nbsp;&nbsp;=20
      while true=20
      =
do<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&=
nbsp;&nbsp;&nbsp;&nbsp;=20
      =
begin<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
max:=3D0;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
maxl:=3D0;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      for i:=3D1 to m=20
      =
do<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&=
nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      if not visit[i] and (flow[i]&gt;max)=20
      =
then<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=
&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
begin<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
max:=3Dflow[i];<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&=
nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
maxl:=3Di;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
end;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      if (maxl=3D0)or(maxl=3Dvm) then=20
      =
break;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nb=
sp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
visit[maxl]:=3Dtrue;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&=
nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      for i:=3D1 to m=20
      =
do<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&=
nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      if flow[i]&lt;min(max,capacity[maxl,i])=20
      =
then<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=
&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
begin<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
pre[i]:=3Dmaxl;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&=
nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
flow[i]:=3Dmin(max,capacity[maxl,i]);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&n=
bsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nb=
sp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
end;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
end;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;=20
      if maxl=3D0 then=20
      =
break;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nb=
sp;=20
      =
increse:=3Dflow[vm];<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&=
nbsp;&nbsp;&nbsp;=20
      =
inc(total,increse);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&n=
bsp;&nbsp;&nbsp;=20
      =
i:=3Dvm;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&=
nbsp;=20
      while i&gt;1=20
      =
do<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&=
nbsp;&nbsp;&nbsp;&nbsp;=20
      =
begin<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
jump:=3Dpre[i];<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      =
dec(capacity[jump,i],increse);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nb=
sp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;=20
      =
inc(capacity[i,jump],increse);<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nb=
sp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbs=
p;=20
      =
i:=3Djump;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp=
;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      end;<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;=20
      end;<BR>&nbsp;&nbsp;&nbsp; exit(total);<BR>end;<BR>procedure=20
      work;<BR>begin<BR>&nbsp;&nbsp;&nbsp;=20
      assign(output,'ditch.out');rewrite(output);<BR>&nbsp;&nbsp;&nbsp;=20
      writeln(maxflow(1,m));<BR>&nbsp;&nbsp;&nbsp;=20
      close(output);<BR>end;<BR>begin<BR>&nbsp;&nbsp;&nbsp;=20
      init;<BR>&nbsp;&nbsp;&nbsp; work;<BR>end.</STRONG></P>
      <P>
      <P></P>
      <P><STRONG>USACO=B5=C4=CB=E3=B7=A8=BA=DC=BC=F2=BD=E0</STRONG></P>
      <P><STRONG>This is a basic maximum flow problem. Just use the max =
flow=20
      algorithm. </STRONG></P><PRE><STRONG>#include &lt;stdio.h&gt;
#include &lt;string.h&gt;

#define MAXI 200

/* total drain amount between intersection points */
int drain[MAXI][MAXI];
int nint; /* number of intersection points */

int cap[MAXI]; /* amount of flow that can get to each node */
int vis[MAXI]; /* has this node been visited by Dijkstra's yet? */
int src[MAXI]; /* the previous node on the path from the source to here =
*/

int augment(void)
 { /* run a Dijkstra's varient to find maximum augmenting path */
  int lv;
  int mloc, max;
  int t;

  memset(cap, 0, sizeof(cap));
  memset(vis, 0, sizeof(vis));

  cap[0] =3D 2000000000;
  while (1)
   {
    /* find maximum unvisited node */
    max =3D 0;
    mloc =3D -1;
    for (lv =3D 0; lv &lt; nint; lv++)
      if (!vis[lv] &amp;&amp; cap[lv] &gt; max)
       {
        max =3D cap[lv];
 mloc =3D lv;
       }
    if (mloc =3D=3D -1) return 0;
    if (mloc =3D=3D nint-1) break; /* max is the goal, we're done */

    vis[mloc] =3D -1; /* mark as visited */

    /* update neighbors, if going through this node improves the
       capacity */
    for (lv =3D 0; lv &lt; nint; lv++)
      if (drain[mloc][lv] &gt; cap[lv] &amp;&amp; max &gt; cap[lv])
       {
        cap[lv] =3D drain[mloc][lv];
 if (cap[lv] &gt; max) cap[lv] =3D max;
 src[lv] =3D mloc;
       }
   }
  max =3D cap[nint-1];

  /* augment path, starting at end */
  for (lv =3D nint-1; lv &gt; 0; lv =3D src[lv])
   {
    t =3D src[lv];
    drain[t][lv] -=3D max;
    drain[lv][t] +=3D max;
   }
  return max;
 }

int main(int argc, char **argv)
 {
  FILE *fout, *fin;
  int lv;
  int num;
  int p1, p2, c;

  if ((fin =3D fopen("ditch.in", "r")) =3D=3D NULL)
   {
    perror ("fopen fin");
    exit(1);
   }
  if ((fout =3D fopen("ditch.out", "w")) =3D=3D NULL)
   {
    perror ("fopen fout");
    exit(1);
   }

  fscanf (fin, "%d %d", &amp;num, &amp;nint);
  while (num--)
   {
    fscanf (fin, "%d %d %d", &amp;p1, &amp;p2, &amp;c);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -