📄 configurations.htm
字号:
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Large charset configurations for RainbowCrack</title>
</head>
<body>
<h1>Large charset configurations for RainbowCrack</h1>
<font size="2">by Zhu Shuanglei <shuanglei@hotmail.com><br>
<a href="http://www.antsight.com/zsl/rainbowcrack/">http://www.antsight.com/zsl/rainbowcrack/</a><br>
</font>
<hr size="1">
<h2>1. Introduction</h2>
<p>In this article, we will introduce some large charset configurations for RainbowCrack.
All these configurations need long precomputation time. <br>
If you haven't read the tutorial of RainbowCrack, read
it first before you read this.<br>
</p>
<h2>2. Explanation of success rate</h2>
<p>In the tutorial, there is a configuration for charset
"alpha-numeric"(configuration #2). We precompute five rainbow tables
and reach the success rate 99.04%, which means if there are 1000
alpha-numeric passwords to crack, you can crack about 990 of them with the help
of these five tables. Perhaps you want to go further.<br>
In fact, each rainbow table has its own success rate. In configuration #2, the
success rate of each table is 60.55%.(see Appendix A for more infomation).
However, success rate of each table is independent and if you have two such
rainbow tables, the success rate will reach:<br>
1 - (1 - 0.6055) ^ 2 = 0.8444<br>
If you have five such tables, the success rate is now:<br>
1 - (1 - 0.6055) ^ 5 = 0.9904</p>
<p>Now you know how to reach better success rate: <br>
1 - (1 - 0.6055) ^ 6 = 0.9962<br>
1 - (1 - 0.6055) ^ 7 = 0.9985<br>
1 - (1 - 0.6055) ^ 8 = 0.9994<br>
1 - (1 - 0.6055) ^ 9 = 0.9998<br>
....</p>
<p>Just generate additional rainbow tables to reach any success rate you want:<br>
rtgen lm alpha-numeric 1 7 5 2400 40000000 all<br>
rtgen lm alpha-numeric 1 7 6 2400 40000000 all<br>
rtgen lm alpha-numeric 1 7 7 2400 40000000 all<br>
rtgen lm alpha-numeric 1 7 8 2400 40000000 all<br>
....</p>
<p>This is another trade-off: higher success rate at the cost of additional
precomputation time and larger disk space.<br>
</p>
<h2>3. Configuration #3 for charset "alpha-numeric-symbol14"</h2>
<table border="1" cellspacing="0" bordercolor="#C0C0C0" width="927">
<tr>
<td colSpan="2" width="921">configuration #3</td>
</tr>
<tr>
<td width="224">hash algorithm</td>
<td width="693">lm</td>
</tr>
<tr>
<td width="224">charset</td>
<td width="693">alpha-numeric-symbol14(ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!@#$%^&*()-_+=)<br>
(or any charset with same length)</td>
</tr>
<tr>
<td width="224">plaintext length range</td>
<td width="693">1 - 7</td>
</tr>
<tr>
<td width="224">key space</td>
<td width="693">50^1 + 50^2 + 50^3 + 50^4 + 50^5 + 50^6 + 50^7 = 797193877550</td>
</tr>
<tr>
<td width="224">t</td>
<td width="693">5700</td>
</tr>
<tr>
<td width="224">m</td>
<td width="693">200000000</td>
</tr>
<tr>
<td width="224">l</td>
<td width="693">6</td>
</tr>
<tr>
<td width="224">disk usage</td>
<td width="693">m * 16 * l = 19200000000 B = 18.3 GB</td>
</tr>
<tr>
<td width="224">success rate</td>
<td width="693">1 - (1 - 0.6864) ^ 6 = 0.9990</td>
</tr>
<tr>
<td width="224">mean cryptanalysis time</td>
<td width="693">66.7878 s</td>
</tr>
<tr>
<td width="224">max cryptanalysis time</td>
<td width="693"> 275.3390 s</td>
</tr>
<tr>
<td width="224">max disk access time</td>
<td width="693"> 570.3285 s</td>
</tr>
<tr>
<td vAlign="top" width="224">table precomputation commands</td>
<td width="693">rtgen lm alpha-numeric-symbol14 1 7 0 5700 40000000 #0<br>
rtgen lm alpha-numeric-symbol14 1 7 0 5700 40000000 #1<br>
rtgen lm alpha-numeric-symbol14 1 7 0 5700 40000000 #2<br>
rtgen lm alpha-numeric-symbol14 1 7 0 5700 40000000 #3<br>
rtgen lm alpha-numeric-symbol14 1 7 0 5700 40000000 #4<br>
<br>
rtgen lm alpha-numeric-symbol14 1 7 1 5700 40000000 #0<br>
rtgen lm alpha-numeric-symbol14 1 7 1 5700 40000000 #1<br>
rtgen lm alpha-numeric-symbol14 1 7 1 5700 40000000 #2<br>
rtgen lm alpha-numeric-symbol14 1 7 1 5700 40000000 #3<br>
rtgen lm alpha-numeric-symbol14 1 7 1 5700 40000000 #4<br>
<br>
rtgen lm alpha-numeric-symbol14 1 7 2 5700 40000000 #0<br>
rtgen lm alpha-numeric-symbol14 1 7 2 5700 40000000 #1<br>
rtgen lm alpha-numeric-symbol14 1 7 2 5700 40000000 #2<br>
rtgen lm alpha-numeric-symbol14 1 7 2 5700 40000000 #3<br>
rtgen lm alpha-numeric-symbol14 1 7 2 5700 40000000 #4<br>
<br>
rtgen lm alpha-numeric-symbol14 1 7 3 5700 40000000 #0<br>
rtgen lm alpha-numeric-symbol14 1 7 3 5700 40000000 #1<br>
rtgen lm alpha-numeric-symbol14 1 7 3 5700 40000000 #2<br>
rtgen lm alpha-numeric-symbol14 1 7 3 5700 40000000 #3<br>
rtgen lm alpha-numeric-symbol14 1 7 3 5700 40000000 #4<br>
<br>
rtgen lm alpha-numeric-symbol14 1 7 4 5700 40000000 #0<br>
rtgen lm alpha-numeric-symbol14 1 7 4 5700 40000000 #1<br>
rtgen lm alpha-numeric-symbol14 1 7 4 5700 40000000 #2<br>
rtgen lm alpha-numeric-symbol14 1 7 4 5700 40000000 #3<br>
rtgen lm alpha-numeric-symbol14 1 7 4 5700 40000000 #4<br>
<br>
rtgen lm alpha-numeric-symbol14 1 7 5 5700 40000000 #0<br>
rtgen lm alpha-numeric-symbol14 1 7 5 5700 40000000 #1<br>
rtgen lm alpha-numeric-symbol14 1 7 5 5700 40000000 #2<br>
rtgen lm alpha-numeric-symbol14 1 7 5 5700 40000000 #3<br>
rtgen lm alpha-numeric-symbol14 1 7 5 5700 40000000 #4</td>
</tr>
<tr>
<td vAlign="top" width="224">table precomputation time</td>
<td width="693">5700 * 200000000 * 6 / 354000 / 3600 / 24 = 224 days<br>
7.5 days for each file, 30 files total</td>
</tr>
</table>
<h2>
4. Configuration #4 for charset "all"</h2>
<table border="1" cellspacing="0" bordercolor="#C0C0C0" width="927">
<tr>
<td colSpan="2" width="921">configuration #4</td>
</tr>
<tr>
<td width="224">hash algorithm</td>
<td width="693">lm</td>
</tr>
<tr>
<td width="224">charset</td>
<td width="693">all(ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!@#$%^&*()-_+=~`[]{}|\:;"'<>,.?/)<br>
(or any charset with same length)</td>
</tr>
<tr>
<td width="224">plaintext length range</td>
<td width="693">1 - 7</td>
</tr>
<tr>
<td width="224">key space</td>
<td width="693">68^1 + 68^2 + 68^3 + 68^4 + 68^5 + 68^6 + 68^7 = 6823331935124</td>
</tr>
<tr>
<td width="224">t</td>
<td width="693">9000</td>
</tr>
<tr>
<td width="224">m</td>
<td width="693">1000000000</td>
</tr>
<tr>
<td width="224">l</td>
<td width="693">8</td>
</tr>
<tr>
<td width="224">disk usage</td>
<td width="693">m * 16 * l = 128000000000 B = 119 GB</td>
</tr>
<tr>
<td width="224">success rate</td>
<td width="693">1 - (1 - calc_success_probability(6823331935124, 9000, 8000000000/8)) ^ 8 = 0.9990</td>
</tr>
<tr>
<td width="224">mean cryptanalysis time</td>
<td width="693">197.0106 s</td>
</tr>
<tr>
<td width="224">max cryptanalysis time</td>
<td width="693"> 915.2542 s</td>
</tr>
<tr>
<td width="224">max disk access time</td>
<td width="693"> 3802.2 s</td>
</tr>
<tr>
<td vAlign="top" width="224">table precomputation commands</td>
<td width="693">rtgen lm all 1 7 0 9000 40000000 #00<br>
rtgen lm all 1 7 0 9000 40000000 #01<br>
rtgen lm all 1 7 0 9000 40000000 #02<br>
...<br>
rtgen lm all 1 7 0 9000 40000000 #23<br>
rtgen lm all 1 7 0 9000 40000000 #24<br>
<br>
rtgen lm all 1 7 1 9000 40000000 #00<br>
rtgen lm all 1 7 1 9000 40000000 #01<br>
rtgen lm all 1 7 1 9000 40000000 #02<br>
...<br>
rtgen lm all 1 7 1 9000 40000000 #23<br>
rtgen lm all 1 7 1 9000 40000000 #24<br>
<br>
rtgen lm all 1 7 2 9000 40000000 #00<br>
rtgen lm all 1 7 2 9000 40000000 #01<br>
rtgen lm all 1 7 2 9000 40000000 #02<br>
...<br>
rtgen lm all 1 7 2 9000 40000000 #23<br>
rtgen lm all 1 7 2 9000 40000000 #24<br>
<br>
rtgen lm all 1 7 3 9000 40000000 #00<br>
rtgen lm all 1 7 3 9000 40000000 #01<br>
rtgen lm all 1 7 3 9000 40000000 #02<br>
...<br>
rtgen lm all 1 7 3 9000 40000000 #23<br>
rtgen lm all 1 7 3 9000 40000000 #24<br>
<br>
rtgen lm all 1 7 4 9000 40000000 #00<br>
rtgen lm all 1 7 4 9000 40000000 #01<br>
rtgen lm all 1 7 4 9000 40000000 #02<br>
...<br>
rtgen lm all 1 7 4 9000 40000000 #23<br>
rtgen lm all 1 7 4 9000 40000000 #24<br>
<br>
rtgen lm all 1 7 5 9000 40000000 #00<br>
rtgen lm all 1 7 5 9000 40000000 #01<br>
rtgen lm all 1 7 5 9000 40000000 #02<br>
...<br>
rtgen lm all 1 7 5 9000 40000000 #23<br>
rtgen lm all 1 7 5 9000 40000000 #24<br>
<br>
rtgen lm all 1 7 6 9000 40000000 #00<br>
rtgen lm all 1 7 6 9000 40000000 #01<br>
rtgen lm all 1 7 6 9000 40000000 #02<br>
...<br>
rtgen lm all 1 7 6 9000 40000000 #23<br>
rtgen lm all 1 7 6 9000 40000000 #24<br>
<br>
rtgen lm all 1 7 7 9000 40000000 #00<br>
rtgen lm all 1 7 7 9000 40000000 #01<br>
rtgen lm all 1 7 7 9000 40000000 #02<br>
...<br>
rtgen lm all 1 7 7 9000 40000000 #23<br>
rtgen lm all 1 7 7 9000 40000000 #24</td>
</tr>
<tr>
<td vAlign="top" width="224">table precomputation time</td>
<td width="693">9000 * 1000000000 * 8 / 354000 / 3600 / 24 = 2354 days<br>
11.8 days for each file, 200 files total</td>
</tr>
</table>
<h2>
5. General notes for large charset configurations</h2>
<ul>
<li>These configurations are ready for a typical 666MHz CPU. The performance
will be better with faster CPU.</li>
<li>Table precomputation of these configurations is time expensive. When
precomputation is partially finished, it is strongly recommended to test the
files before you continue to find out whether everything is well.<br>
In configuration #3, when the five files for the first rainbow table
(lm_alpha-numeric-symbol14#1-7_0_*.rt)
is finished, you will have the chance of 68.6% to crack an "alpha-numeric-symbol14"
password. Just sort these files and test the files with "random_lm_alpha#1-7.hash".
If everything goes well, you can crack about 7 of all 10 passwords.<br>
In configuration #4, the success rate of the first rainbow table(25 files,
lm_all#1-7_0_*.rt) is 0.5802. This may be an acceptable success rate with only
12.5% of full precomputation time.</li>
<li>Distributed table precomputation is recommended. In fact, all rainbow
tables are independent and you can distribute the tasks to many computers to
save time.</li>
<li>Earlier version of rcrack.exe will run several times slower than it should
be when key space is large. It is recommended that you use version 1.2 if
you want this configuration.
</li>
<li>A fast harddisk will greatly improve the performance of rcrack.exe because
it always takes a long time to load the files.
</li>
</ul>
<p> Notes for advanced users:</p>
<ul>
<li>The <a href="http://www.openssl.org/">openssl</a>'s des routine(des_set_key
and des_ecb_encrypt) takes most of the table precomputation time. If you have
a faster routine, replace it with yours. This may save the time of rtgen.exe
and rcrack.exe.</li>
</ul>
<h2><br>
Appendix A: calc_success_probability.m</h2>
<p>The <a href="http://www.mathworks.com/"> matlab</a> script below is used to
calculate the success rate of a rainbow table.<br>
File: calc_success_probability.m </p>
<table border="0" width="100%" bgcolor="#EBEBEB">
<tr>
<td width="100%">
<pre>% 1 - (1 - 1 / N)^(m(1) + m(2) + m(3) + ... + m(t - 1))
% m(1) = m, m(i) = N * (1 - (1 - 1 / N) ^ m(i - 1))
function ret = calc_success_probability(N, t, m)
arr = zeros(1, t - 1);
arr(1) = m;
for i = 2 : t - 1
arr(i) = N * (1 - (1 - 1 / N) ^ arr(i - 1));
end;
exp = 0;
for i = 1 : t - 1
exp = exp + arr(i);
end;
ret = 1 - (1 - 1 / N) ^ exp;</pre>
</td>
</tr>
</table>
<p>Parameters:<br>
N
key space<br>
t
rainbow chain length<br>
m
rainbow chain count<br>
return success rate of the rainbow table</p>
<p>You need matlab to run the script, for example:</p>
<table border="0" width="100%" bgcolor="#EBEBEB">
<tr>
<td width="100%">
<pre>>> calc_success_probability(80603140212, 2400, 40000000)
ans =
0.6055</pre>
</td>
</tr>
</table>
<p><br>
Create date: 2003/10/12<br>
Revised: <!--webbot bot="Timestamp" startspan S-Type="EDITED"
S-Format="%Y/%m/%d" -->2003/11/21<!--webbot bot="Timestamp" i-CheckSum="12366"
endspan -->
</p>
</body>
</html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -