📄 test.cpp
字号:
++first;
if (first % 2 == 0)
Xover(one, mem);
else
one = mem;
}
}
}
/**************************************************************/
/* Crossover: performs crossover of the two selected parents. */
/**************************************************************/
void Xover(int one, int two)
{
int i;
int point; /* crossover point */
/* select crossover point */
if(NVARS > 1)
{
if(NVARS == 2)
point = 1;
else
point = (rand() % (NVARS - 1)) + 1;
for (i = 0; i < point; i++)
swap(&population[one].gene[i], &population[two].gene[i]);
}
}
/*************************************************************/
/* Swap: A swap procedure that helps in swapping 2 variables */
/*************************************************************/
void swap(double *x, double *y)
{
double temp;
temp = *x;
*x = *y;
*y = temp;
}
/**************************************************************/
/* Mutation: Random uniform mutation. A variable selected for */
/* mutation is replaced by a random value between lower and */
/* upper bounds of this variable */
/**************************************************************/
void mutate(void)
{
int i, j;
double lbound, hbound;
double x;
for (i = 0; i < POPSIZE; i++)
for (j = 0; j < NVARS; j++)
{
x = rand()%1000/1000.0;
if (x < PMUTATION)
{
/* find the bounds on the variable to be mutated */
lbound = population[i].lower[j];
hbound = population[i].upper[j];
population[i].gene[j] = randval(lbound, hbound);
}
}
}
/***************************************************************/
/* Report function: Reports progress of the simulation. Data */
/* dumped into the output file are separated by commas */
/***************************************************************/
void report(void)
{
int i;
double best_val; /* best population fitness */
double avg; /* avg population fitness */
double stddev; /* std. deviation of population fitness */
double sum_square; /* sum of square for std. calc */
double square_sum; /* square of sum for std. calc */
double sum; /* total population fitness */
sum = 0.0;
sum_square = 0.0;
for (i = 0; i < POPSIZE; i++)
{
sum += population[i].fitness;
sum_square += population[i].fitness * population[i].fitness;
}
avg = sum/(double)POPSIZE;
square_sum = avg * avg * POPSIZE;
stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1));
best_val = population[POPSIZE].fitness;
fprintf(galog, "\n%5d, %6.9f, %6.9f, %6.9f ", generation,
best_val, avg, stddev);
}
double f(double x[]){
int i;
double t[VAR];
double fit;
for(i = 0; i < NVARS; i++){
t[i+1] = x[i];
fit = 21.5+t[1]*sin(4*3.1415926536*t[1]) + t[2]*sin(20*3.1415926536*t[2]);
return fit;
}
}
double best_nearby(double delta[], double point[], double prevbest)
{
double z[VAR];
double maxf, ftmp;
int i;
maxf = prevbest;
for (i = 0; i < NVARS; i++)
z[i] = point[i];
for (i = 0; i < NVARS; i++) {
z[i] = point[i] + delta[i];
//
if((z[i] < population[0].lower[0])||(z[i] > population[0].upper[0])) continue;
//
ftmp = f(z);
if (ftmp > maxf)
maxf = ftmp;
else {
delta[i] = 0.0 - delta[i];
z[i] = point[i] + delta[i];
ftmp = f(z);
if (ftmp > maxf)
maxf = ftmp;
else
z[i] = point[i];
}
}
for (i = 0; i < NVARS; i++)
point[i] = z[i];
return (maxf);
}
void hook(double startpt[], double thefitness, int men)
{
double delta[VAR];
double newf, fbefore,steplength,tmp;
double xbefore[VAR], newx[VAR];
int i,j,keep;
int iters,iadj;
double *best;
int themen;
themen = men;
for (i = 0; i < NVARS; i++) {
newx[i] = xbefore[i] = startpt[i];
delta[i] = fabs(startpt[i] * rho);
if (delta[i] == 0.0)
delta[i] = rho;
}
iadj = 0;
steplength = rho;
iters = 0;
fbefore = thefitness;
newf = fbefore;
while((iters < itermax)&&(steplength > epsilon) )
{
iters++;
iadj++;
/* find best new point, one coord at a time */
for (i = 0; i < NVARS; i++) {
newx[i] = xbefore[i];
}
newf = best_nearby(delta, newx, fbefore);
/* if we made some improvements, pursue that direction */
keep = 1;
while((newf > fbefore) && (keep == 1)) {
iadj = 0;
for (i = 0; i < NVARS; i++) {
/* firstly, arrange the sign of delta[] */
if (newx[i] <= xbefore[i])
delta[i] = 0.0 - fabs(delta[i]);
else
delta[i] = fabs(delta[i]);
/* now, move further in this direction */
tmp = xbefore[i];
xbefore[i] = newx[i];
newx[i] = newx[i] + newx[i] - tmp; //模移
if((newx[i] < population[0].lower[0])||(newx[i] > population[0].upper[0])) continue;
}
fbefore = newf;
newf = best_nearby(delta, newx, fbefore);
/* if the further (optimistic) move was bad.... */
if (newf <= fbefore)
break;
/* make sure that the differences between the new */
/* and the old points are due to actual */
/* displacements; beware of roundoff errors that */
/* might cause newf < fbefore */
keep = 0;
for (i = 0; i < NVARS; i++) {
keep = 1;
if (fabs(newx[i] - xbefore[i]) >
(0.5 * fabs(delta[i])))
break;
else
keep = 0;
}
}
if ((steplength >= epsilon) && (newf <= fbefore))
{
steplength = steplength * rho;
for (i = 0; i < NVARS; i++) {
delta[i] *= rho;
}
}
}
for (i = 0; i < NVARS; i++) {
population[themen].gene[i] = xbefore[i];
}
population[themen].fitness = fbefore;
}
void patternsearch() {
int men, i, j;
double x;
double thefitness;
double thebest[VAR];
for(men = 0; men < POPSIZE; men++) {
x = rand()%1000/1000.0;
if (x > PSA) {
thefitness = population[men].fitness;
/*printf("before PS :\n");
for(i = 0; i < NVARS; i++){
printf("%f", population[men].gene[i]);
}
printf("\n");*/
hook(population[men].gene,thefitness,men);
/* printf("after PS :\n");
for(i = 0; i < NVARS; i++){
printf("%f", population[men].gene[i]);
}
printf("\n");*/
}
}
}
/**************************************************************/
/* Main function: Each generation involves selecting the best */
/* members, performing crossover & mutation and then */
/* evaluating the resulting population, until the terminating */
/* condition is satisfied */
/**************************************************************/
void main(void)
{
int i;
if ((galog = fopen("galog.txt","w"))==NULL)
{
exit(1);
}
srand((unsigned)time(0));
generation = 0;
fprintf(galog, "\n generation best average standard \n");
fprintf(galog, " number value fitness deviation \n");
initialize();
evaluate();
keep_the_best();
while(generation<MAXGENS)
{
generation++;
select();
crossover();
mutate();
patternsearch();
report();
evaluate();
elitist();
printf("\n%d",generation);
}
fprintf(galog,"\n\n Simulation completed\n");
fprintf(galog,"\n Best member: \n");
for (i = 0; i < NVARS; i++)
{
fprintf (galog,"\n var(%d) = %3.9f",i,population[POPSIZE].gene[i]);
}
fprintf(galog,"\n\n Best fitness = %3.9f",population[POPSIZE].fitness);
fclose(galog);
printf("Success\n");
//
}
/***************************************************************/
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -