📄 adaptfilt.m
字号:
function varargout=adaptfilt(varargin)
%ADAPTFILT Adaptive filter object.
% H = ADAPTFILT.ALGORITHM(input1,...) returns an adaptive filter object,
% H, of type ALGORITHM. You must specify an algorithm with ADAPTFILT.
% Each algorithm takes several inputs. When you specify ADAPTFILT.ALGORITHM
% with no inputs, a filter with default parameters is created (the
% defaults depend on the particular filter algorithm). Some default
% parameters can then be changed with SET(H,PARAMNAME,PARAMVAL).
%
% ADAPTFILT.ALGORITHM can be one of the following (type help
% adaptfilt/algorithm to get help on a specific algorithm - e.g. help
% adaptfilt/lms):
%
% adaptfilt.lms Direct-form least-mean-square FIR adaptive filter
% adaptfilt.nlms Direct-form Normalized LMS FIR adaptive filter
% adaptfilt.dlms Direct-form delayed LMS FIR adaptive filter
% adaptfilt.blms Block LMS FIR adaptive filter
% adaptfilt.blmsfft FFT-based block LMS FIR adaptive filter
%
% adaptfilt.ss Direct-form sign-sign FIR adaptive filter
% adaptfilt.se Direct-form sign-error FIR adaptive filter
% adaptfilt.sd Direct-form sign-data FIR adaptive filter
%
% adaptfilt.filtxlms Filtered-X LMS FIR adaptive filter
% adaptfilt.adjlms Adjoint LMS FIR adaptive filter
%
% adaptfilt.lsl Least-squares lattice FIR adaptive filter
% adaptfilt.qrdlsl QR-decomposition LS lattice FIR adaptive filter
% adaptfilt.gal Gradient adaptive lattice FIR adaptive filter
%
% adaptfilt.fdaf Frequency-domain FIR adaptive filter
% adaptfilt.ufdaf Unconstrained frequency-domain FIR adaptive filter
% adaptfilt.pbfdaf Partitioned-block FDAF
% adaptfilt.pbufdaf Partitioned-block unconstrained FDAF
% adaptfilt.tdafdft Transform-domain FIR adaptive filter using DFT
% adaptfilt.tdafdct Transform-domain FIR adaptive filter using DCT
%
% adaptfilt.rls Recursive least-squares FIR adaptive filter
% adaptfilt.hrls Householder RLS FIR adaptive filter
% adaptfilt.swrls Sliding-window RLS FIR adaptive filter
% adaptfilt.hswrls Householder SWRLS FIR adaptive filter
% adaptfilt.qrdrls QR-decomposition RLS FIR adaptive filter
%
% adaptfilt.ftf Fast transversal least-squares FIR adaptive filter
% adaptfilt.swftf Sliding-window FTF FIR adaptive filter
%
% adaptfilt.ap Affine projection FIR adaptive filter
% adaptfilt.bap Block AP FIR adaptive filter
% adaptfilt.apru AP FIR adaptive filter with recursive matrix update
%
% The following methods are available for adaptive filters (type help
% adaptfilt/METHOD to get help on a specific method - e.g. help
% adaptfilt/filter):
%
% adaptfilt/coefficients Instantaneous adaptive filter coefficients.
% adaptfilt/filter Execute ("run") adaptive filter.
% adaptfilt/freqz Instantaneous adaptive filter frequency response.
% adaptfilt/grpdelay Instantaneous adaptive filter group-delay.
% adaptfilt/impz Instantaneous adaptive filter impulse response.
% adaptfilt/info Adaptive filter information.
% adaptfilt/isfir True for FIR adaptive filters.
% adaptfilt/islinphase True for linear phase adaptive filters.
% adaptfilt/ismaxphase True for maximum-phase adaptive filters.
% adaptfilt/isminphase True for minimum-phase adaptive filters.
% adaptfilt/isreal True for real adaptive filters.
% adaptfilt/isstable True for stable adaptive filters.
% adaptfilt/maxstep Maximum step size.
% adaptfilt/msepred Predicted mean-square error.
% adaptfilt/msesim Measured mean-square error.
% adaptfilt/norm Instantaneous filter norm.
% adaptfilt/phasez Instantaneous adaptive filter phase response.
% adaptfilt/reset Reset adaptive filter.
% adaptfilt/stepz Instantaneous adaptive filter step response.
% adaptfilt/tf Instantaneous adaptive filter transfer function.
% adaptfilt/zerophase Instantaneous adaptive filter zerophase response.
% adaptfilt/zpk Instantaneous adaptive filter zero/pole/gain.
% adaptfilt/zplane Instantaneous adaptive filter Z-plane pole-zero plot.
%
% Example: System identification with LMS adaptive filter.
% x = randn(1,500); % Input to the filter
% b = fir1(31,0.5); % FIR system to be identified
% n = 0.1*randn(1,500); % Observation noise signal
% d = filter(b,1,x)+n; % Desired signal
% mu = 0.008; % LMS step size
% h = adaptfilt.lms(32,mu);
% [y,e] = filter(h,x,d);
% subplot(2,1,1); plot(1:500,[d;y;e]);
% title('System Identification of an FIR filter');
% legend('Desired','Output','Error');
% xlabel('time index'); ylabel('signal value');
% subplot(2,1,2); stem([b.',h.Coefficients.']);
% legend('Actual','Estimated');
% xlabel('coefficient #'); ylabel('coefficient value'); grid on;
%
% For more information, enter
% doc adaptfilt
% at the MATLAB command line.
%
% See also DFILT, MFILT.
% Copyright 1999-2004 The MathWorks, Inc.
% $Revision: 1.2.4.3 $ $Date: 2004/04/12 23:15:38 $
msg = sprintf(['Use ADAPTFILT.ALGORITHM to create an adaptive filter.\n',...
'For example,\n H = adaptfilt.lms']);
error(msg)
% [EOF]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -