⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 chengxu.txt

📁 Matlab利用BP神经网络和遗传算法对煤在锅炉内的燃烧率及一(儿)氧化氮的排放量进行优化
💻 TXT
字号:
p=[347.5	0	0	136.49	371.72	10.1	25.98	53.42	10.5	25157	152.59	4	27.29	27.27	27.38	27.51	27.04	76.88	75.99	76.51	76.58	75.76	83	25	20.18
347.4	0	0	136.39	380.68	10.1	25.98	53.42	10.5	25157	135.6	4	27.28	27.26	27.34	27.47	27.04	76.13	75.94	77.09	75.76	75.76	82	25	25.61
346.6	0	0	135.53	381.25	10.1	25.98	53.42	10.5	25157	153.5	4	27.21	27.17	27.25	26.96	26.94	76.37	76.14	76.17	76.77	75.8	82	25	30.47
345.6	0	0	137.24	388.86	10.1	25.98	53.42	10.5	25157	135.3	5	27.51	27.53	27.67	27.18	27.35	78.08	77.65	78.03	77.75	77.35	100	25	20.83
345.3	0	0	135.35	389.46	10.1	25.98	53.42	10.5	25157	134.5	5	27.28	27.26	27.27	26.58	26.96	77.65	77.87	78.05	78.61	77.28	100	25	20.82
344.3	0	0	137.94	385.04	10.1	25.98	53.42	10.5	25157	134.4	5	27.52	27.6	27.8	27.63	27.39	76.83	77.09	78.02	76.76	76.34	100	25	20.8
345.5	0	0	135.11	383.48	10.1	25.98	53.42	10.5	25157	136.1	3	27.08	27.11	27.16	26.97	26.79	76.83	76.79	76.47	76.87	76.52	70	25	20.77
343.1	0	0	135.28	381.91	10.1	25.98	53.42	10.5	25157	136.6	3	27.13	27.08	27.13	27.13	26.81	76.45	76.6	76.98	76.18	75.7	68	25	20.74
346.8	0	0	134.89	379.32	10.1	25.98	53.42	10.5	25157	136.7	3	27.11	27.1	27.09	26.81	26.78	76.48	73.43	76.76	76.2	76.45	70	25	20.8
277.5	0	0	109.36	319.46	10.1	25.98	53.42	10.5	25157	130.6	4	27.35	27.32	27.45	27.24	0	76.35	76.28	77.15	76.96	12.72	59	25	20.57
277.3	0	0	109.36	318.65	10.1	25.98	53.42	10.5	25157	130.3	4	27.35	27.34	27.45	27.22	0	75.88	76.5	77.18	76.7	12.39	60	25	20.56
276.1	0	0	109.3	318.73	10.1	25.98	53.42	10.5	25157	130.4	4	27.35	27.36	27.39	27.2	0	76.23	76.41	76.89	76.68	12.52	60	25	20.58
275.8	0	0	109.49	328.44	10.1	25.98	53.42	10.5	25157	136.4	4	0	27.42	27.48	27.39	27.2	23.45	75.77	76.22	77.4	75.6	61	25	20.61
198.7	0	0	82.13	284.95	10.1	25.98	53.42	10.5	25157	137	4.21	0	27.3	27.39	27.44	0	19.37	75.16	75.35	76.84	38.23	39	25	22.47
213	0	0	82.12	276.87	10.1	25.98	53.42	10.5	25157	130.1	4.27	27.24	27.44	27.44	0	0	79.25	75.43	73.2	10.05	38.94	48	25	21.84
255	0	0	101.3	370	10.2	23.74	50.41	15.65	23565	125.5	4.3	25.6	25.2	25.1	25.4	0	70	74.4	74.3	74.3	77	54	25	16
255	0	0	102.3	278.78	10.2	23.74	50.41	15.65	23565	121	4.05	25.5	25.5	25.6	25.7	0	70.4	69.5	69.2	69.68	0	50	25	25.38
280.7	116.83	0	94.43	312.03	10.1	25.98	53.42	10.5	25157	153.1	4	23.72	23.71	23.73	23.27	0	74.82	74.75	75.02	74.4	13.04	60	25	20.52
277.6	117.57	0	95.67	319.81	10.1	25.98	53.42	10.5	25157	158.2	4	0	23.87	23.98	24.02	23.8	22.92	73.8	73.12	75.53	74.44	63	25	20.53
347.7	150	0	114.96	359.69	10.1	25.98	53.42	10.5	25157	164.8	4	22.99	22.96	23.08	23.16	22.77	71.99	71.95	71.97	71.97	71.81	79	25	20
347.37	150	0	115.2	358.69	10.1	25.98	53.42	10.5	25157	164.7	4	23.08	23.01	23.16	23.13	22.82	72.12	71.63	71.12	72.43	71.39	75	25	19.99
347.79	150	0	115.6	360.01	10.1	25.98	53.42	10.5	25157	165.5	4	23.06	23.04	23.16	23.38	22.96	72.92	71.92	72.31	71.57	71.29	75	25	19.98
351.7	251	0	88.11	287.9	17.6	27.05	47.97	7.38	22713	180.5	3.62	22.3	22.6	22.3	22.7	0	71.9	73	70	73	0	25	67	26.3
350	252.6	0	91.46	286.9	17.6	27.05	47.97	7.38	22713	180.8	3.7	22.68	22.95	22.83	23	0	72	73	69.9	72	0	25	25	26.3
320	197.4	0	101.2	294.51	17.6	27.05	47.97	7.38	22713	171.21	3.75	23.4	25.9	25.9	26	0	77.36	72.45	71.78	72.92	0	25	65	26.8
271.67	246.9	0	71.5	265.9	10.1	25.98	53.42	10.5	25157	180	3.7	0	19.6	20.5	15.6	15.8	0	75.8	72	51.1	67	25	38	22
319.3	250.6	0	96.7	285.46	10.1	25.98	53.42	10.5	25157	176.2	3.72	20.7	25.4	25.4	25.2	0	69.11	71.96	71.68	72.71	0	25	65	22
352.3	253.1	0	108.7	351.38	10.1	25.98	53.42	10.5	25157	178.6	3.84	19.6	24.4	24.3	24.4	16	69.13	72.25	71.94	70.97	67.09	25	69	22
352.11	253.3	0	106.07	350.37	10.1	25.98	53.42	10.5	25157	178.63	3.77	23.4	23.6	24.6	24.5	9.97	70.08	71.25	71.75	71.88	65.41	25	88	22
351.44	257.8	0	104.4	350.65	10.1	25.98	53.42	10.5	25157	181.3	4.91	21	21	21	21.1	20.3	72.19	69.24	69.46	70	69.68	25	83	22
349.76	265.3	0	106.5	349.45	10.1	25.98	53.42	10.5	25157	187.6	3.92	21.3	21.4	21.5	21.5	20.8	72.79	68.41	68.66	70.28	69.31	25	62	22
352.53	251.3	0	102.9	348.98	10.1	25.98	53.42	10.5	25157	192.2	3.08	20.6	20.7	20.7	20.8	20.1	72.74	68.72	69.4	69.74	68.38	25	48	22
349.17	250.3	0	109.3	349.98	10.1	25.98	53.42	10.5	25157	186.3	4.04	23.4	23.5	23.6	23.5	15.3	72.94	70.26	69.81	69.74	67.23	25	60	22
352.36	201.4	0	112.8	353.9	10.1	25.98	53.42	10.5	25157	179.5	4.07	24.4	24.1	24.5	24.8	15	74.08	70.09	71.3	71.43	67	25	64	22
350.89	255.2	8.84	96.3	300.74	10.1	25.98	53.42	10.5	25157	176.7	3.9	23.7	24.1	24.4	24.1	0	73.48	72.4	72.49	71.99	10.38	25	74	22
350.09	255.2	8.84	94.1	300.74	10.1	25.98	53.42	10.5	25157	176.7	4	23	23.6	23.8	23.7	0	73.48	72.4	72.49	71.99	10.38	25	74	22
349.3	255.2	8.84	92.4	300.74	10.1	25.98	53.42	10.5	25157	180.7	3.99	22.8	23.1	23.4	23.1	0	73.48	72.4	72.49	71.99	10.38	25	74	22
348.37	255.2	8.84	98.2	300.74	10.1	25.98	53.42	10.5	25157	180.7	3.92	24.2	24.5	24.8	24.7	0	73.48	72.4	72.49	71.99	10.38	25	74	22
352.53	241.3	29.4	76.8	290.98	10.1	25.98	53.42	10.5	25157	179.9	3.94	20.2	20.3	20.6	15.7	0	70.44	70.26	70.5	69.01	10.77	25	73	22
350.2	241.3	29.04	75.3	290.98	10.1	25.98	53.42	10.5	25157	179.9	3.85	19.8	19.9	20.1	15.5	0	70.44	70.26	70.5	69.01	10.77	25	73	22
350.2	241.3	29.36	74.9	290.98	10.1	25.98	53.42	10.5	25157	179.9	3.97	19.7	19.8	20	15.4	0	70.44	70.26	70.5	69.01	10.77	25	73	22
349.88	343.3	18.76	85	296.22	10.1	25.98	53.42	10.5	25157	178.9	4.09	21.5	21.8	22.1	19.6	0	72.52	71.41	70.75	70.35	11.19	25	73	22
350.5	343.3	18.94	79.8	296.22	10.1	25.98	53.42	10.5	25157	180.57	4.02	20.4	20.5	20.7	18.2	0	72.52	71.41	70.75	70.35	11.19	25	25	22

]';
t=[374.8000  434.2000  430.7000  539.5000  537.5000  386.0000  389.0000  393.0000  362.5000...
  362.3000  386.5700  307.0000  238.7500  319.5000  318.4000  281.5700  317.5700  448.2000... 
   442.2000  231.1000  240.0000  273.3000  186.7000  226.3000  269.0000  344.0000  288.4000...
  217.0000  328.3000  296.4000  295.8000  296.2000  296.9000  292.3000  292.4000  314.5000...
   315.4000  534.0000  359.5000  441.6000  269.8000  320.0000  298.0000;
  92.1631   93.1184   92.1118   92.7834   92.8370   93.4054   93.3788   93.3735...
   93.3990   93.4102   93.0734   92.9682   93.3407   93.5934   93.9228   92.1344...
   91.8471   91.4750   91.4355   90.7653   90.7121   90.3092   89.7924   91.1475...
   90.9936   90.2918   90.4319   90.5767   90.8087   91.0411   90.9960   90.7795...
   90.8119   90.8468   90.8880   90.8327   90.7727   92.8370   93.4158   91.4806...
   90.9621   90.4456   90.8329
];
u=p;
v=t;
for i=1:25
  p(i,:)=(p(i,:)-min(u(i,:)))/(max(u(i,:))-min(u(i,:)));
end
for j=1:2
 t(j,:)=(t(j,:)-min(v(j,:)))/(max(v(j,:))-min(v(j,:)));
end
 p_model=p(:,1:43);
 t_model=t(:,1:43);
um=p_model;
 vm= v(:,1:43);
 pm=p_model';
tm=t_model';
n=35;
net=newff(minmax(p_model),[n,2],{'tansig','logsig'},'trainlm');
net.trainParam.epochs=1000;
net.trainParam.goal=0.000001;
LP.lr=0.1;
net.trainParam.show=20;
net=train(net,p_model,t_model);
result=sim(net,p_model); 
a1=max(v(1,:));a2=max(v(2,:));
b1=min(v(1,:));b2=min(v(2,:));
nox=result(1,:)*(a1-b1)+b1 ;
eff=result(1,:)*(a2-b2)+b2;
plot(1:length(v(1,1:43)),v(1,1:43),'r+:',1:length(nox),nox,'bo:')
title('+为真实值,o为预测值')
 title('BP网络模型输出预测曲线');
 xlabel('输入样本点');
 ylabel('NOx排放量');
figure;
plot(1:length(v(2,1:43)),v(2,1:43),'r+:',1:length(eff),eff,'bo:')
title('+为真实值,o为预测值')
 title('BP网络模型输出预测曲线');
 xlabel('输入样本点');
 ylabel('锅炉效率');

 nind=10;
 maxgen=500; 
 preci=10;
ggap=1;
nvar=25;
trace=zeros(2,maxgen);
fieldd=[REP((preci),[1,nvar]);[198.7 0 0 71.5 265.9 10.1 23.74 47.97 7.38 22713  121 3 0 19.6 20 0 0 0 68.41 68.66 10.05 0 25 25  16 ;352.53 343.3 29.4 137.94 389.46 17.6 27.05 53.42 15.65 25157 192.2 5 27.52 27.6 27.8 27.63 27.39 79.25 77.87 78.05 78.61 77.35 100 88 30.47]; REP([1;0;1;1],[1,nvar])];
chrom=CRTBP(nind,nvar*preci);

 gen=0; 
var=BS2RV(chrom,fieldd);
canshu=[var]';
 minv=[198.7 0 0 71.5 265.9 10.1 23.74 47.97 7.38 22713  121 3 0 19.6 20 0 0 0 68.41 68.66 10.05 0 25 25  16]';
maxv=[352.53 343.3 29.4 137.94 389.46 17.6 27.05 53.42 15.65 25157 192.2 5 27.52 27.6 27.8 27.63 27.39 79.25 77.87 78.05 78.61 77.35 100 88 30.47]';
 objv=sim(net,canshu);
objv=objv';
a=1./objv(:,1);
 b=objv(:,2);
 fitnv=1./(RANKING(objv(:,1))+10)+RANKING(objv(:,2));
 while gen<maxgen

fitnv=RANKING(objv); 
selch=SELECT('SUS',chrom,fitnv,ggap);
selch=RECOMBIN('XOVMP',selch,0.7); 
selch=MUT(selch);
variable=BS2RV(selch,fieldd)';

K(25,:)=(variable(25,:)-minv(25))/(maxv(25)-minv(25));
new=K;
ob=sim(net,new); 
ob=ob';
objvsel=1./(RANKING(objv(:,1))+0.1)+RANKING(objv(:,2));
[chrom objv]=REINS(chrom,selch,1,1,fitnv,objvsel);
gen=gen+1; 
[y,i]=max(objv);
hold on;
plot(var(i),y,'ro');
trace(1,gen)=min(objv);
trace(2,gen)=sum(objv)/length(objv);
fitnv=RANKING(objv);
end
var=BS2RV(chrom,fieldd)';
new=[var'];
yuce=sim(net,new');
nox=yuce(1,:)*(a1-b1)+b1 ;
eff=yuce(1,:)*(a2-b2)+b2;
 hold on;
figure(2);
plot(trace(1,:)','bo');
hold on;
plot(trace(2,:)','r-');
grid
legend('解的变化','种群群值的变化')
var1clear

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -