⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fm_opfm.m

📁 电力系统分析计算程序
💻 M
📖 第 1 页 / 共 2 页
字号:
  mu_Qgmin  = mu(idx+nG);     idx = idx + n_gen;  mu_Qgmax  = mu(idx+nG);     idx = idx + n_gen;  mu_Vmin   = mu(idx+nB);     idx = idx + n1;  mu_Vmax   = mu(idx+nB);     idx = idx + n1;  mu_Iijmax = mu(idx+nL);     idx = idx + Line.n;  mu_Ijimax = mu(idx+nL);     idx = idx + Line.n;  if Rsrv.n    mu_Prmin  = mu(idx+nR);     idx = idx + Rsrv.n;    mu_Prmax  = mu(idx+nR);     idx = idx + Rsrv.n;    mu_sumPrd = mu(idx+1);  end  % Computations for the System:  f(theta,V,Qg,Ps,Pd) = 0  %________________________________________________________________________  Line = gcall(Line);  gcall(PQ);  gcall(Shunt)  glambda(SW,1,0);  glambda(PV,1,0);  % Demand & Supply  DAE.g = DAE.g + sparse(Demand.bus,1,Pd,DAE.m,1) ...          + sparse(Demand.vbus,1,Pd.*qonp,DAE.m,1);  DAE.g = DAE.g - sparse(Supply.bus,1,Ps,DAE.m,1) ...          - sparse(busG+n1,1,Qg,DAE.m,1);  Gycall(Line)  Gycall(Shunt)  [Iij,Jij,Hij,Iji,Jji,Hji] = fjh2(Line,flow,mu_Iijmax,mu_Ijimax);  % Gradient of [s] variables  %________________________________________________________________________  gs = s.*mu - ms;  % Gradient of [mu] variables  %________________________________________________________________________  Vbus = DAE.y(Bus.v);  gmu = [Psmin-Ps;Ps-Psmax;Pdmin-Pd;Pd-Pdmax;Qgmin-Qg;Qg-Qgmax; ...         Vmin-Vbus;Vbus-Vmax;Iij-Iijmax;Iji-Iijmax];  if Rsrv.n,    gmu(Supply.n+supR) = gmu(Supply.n+supR) + Pr;    gmu = [gmu; Prmin-Pr;Pr-Prmax;sum(Pr)-sum(Pd)];  end  gmu = gmu + s;  % Gradient of [y] = [theta; V; Qg; Ps; Pd] variables  %________________________________________________________________________  Jg = [DAE.Gy, g_Qg, g_Ps, g_Pd];  if Rsrv.n, Jg = [Jg, g_Pr]; end  dF_dy = (Jg.')*ro;  dG_dy(n2+n_gen+nS) = (Csb + 2*Csc.*Ps + 2*KTBS.*Ps);  dG_dy(n2+n_gen+Supply.n+nD) = -(Cdb+2*Cdc.*Pd+2*KTBD.* ...                                           Pd+qonp.*(Ddb+2*qonp.*Ddc.*Pd));  dG_dy(n2+nS) = (Dsb + 2*Dsc.*Qg(nS));  dH_dtV = (Jij.')*mu_Iijmax + (Jji.')*mu_Ijimax + [mu_t; mu_Vmax-mu_Vmin];  if Rsrv.n,    dH_dy = [dH_dtV; mu_Qgmax-mu_Qgmin; mu_Psmax-mu_Psmin; ...             mu_Pdmax-mu_Pdmin-mu_sumPrd; ...             mu_Psmax(idxR)+mu_Prmax-mu_Prmin+mu_sumPrd];  else    dH_dy = [dH_dtV; mu_Qgmax-mu_Qgmin; mu_Psmax-mu_Psmin; mu_Pdmax-mu_Pdmin];  end  gy = dG_dy - dF_dy + dH_dy;  Jh(n_b+nL,1:n2) = Jij;  Jh(n_b+Line.n+nL,1:n2) = Jji;  % Hessian Matrix [D2xLms]  %________________________________________________________________________  H3 = sparse(n_a+Rsrv.n,n_y);  H3 = H3 - sparse(n_gen+nS,n2+n_gen+nS,(2*Csc+2*KTBS),n_a+Rsrv.n,n_y);  H3 = H3 - sparse(nS,n2+nS,2*Dsc,n_a+Rsrv.n,n_y);  H3 = H3 + sparse(n_gen+Supply.n+nD,n_gen+Supply.n+n2+nD, ...                   (2*Cdc+2*KTBD+2*Ddc.*qonp.*qonp),n_a+Rsrv.n,n_y);  Hess = -hessian(Line,ro(1:n2))+Hij+Hji-hessian(Shunt,ro(1:n2));  D2xLms = [Hess, H31; -H3];  % Complete System Matrix [D2yLms]  %________________________________________________________________________  %I_smu = speye(n_s);  %Z1 = sparse(n_s,n_y);  %Z2 = sparse(n_s,n_s);  %Z3 = sparse(n2,n2);  %Z4 = sparse(n2,n_s);  %H_s  = diag(s);  %H_mu = diag(mu);  %D2yLms = [H_mu,    H_s,   Z1,       Z4'; ...  %          I_smu,   Z2,    Jh,       Z4'; ...  %          Z1',     Jh',   D2xLms,  -Jg'; ...  %          Z4,      Z4,   -Jg,       Z3];  % Compute variable increment  %________________________________________________________________________  switch method   case 1 % Newton Directions    % reduced system    H_m = sparse(1:n_s,1:n_s,mu./s,n_s,n_s);    H_s = sparse(1:n_s,1:n_s,1./s,n_s,n_s);    Jh(:,SW.refbus) = 0;    gy = gy+(Jh.')*(H_m*gmu-H_s*gs);    Jd = [D2xLms+(Jh.')*(H_m*Jh),-Jg.';-Jg,Z3];    % reference angle for the actual system    Jd(SW.refbus,:) = 0;    Jd(:,SW.refbus) = 0;    %Jd = Jd + sparse(SW.refbus,SW.refbus,1,n_y+DAE.m,n_y+DAE.m);    Jd(SW.refbus,SW.refbus) = speye(length(SW.refbus));    gy(SW.refbus) = 0;    % variable increments    Dx = -Jd\[gy; -DAE.g];    Ds = -(gmu+Jh*Dx([1:n_y]));    Dm = -H_s*gs-H_m*Ds;   case 2 % Mehrotra's Predictor-Corrector    % -------------------    % Predictor step    % -------------------    % reduced system    H_m = sparse(1:n_s,1:n_s,mu./s,n_s,n_s);    Jh(:,SW.refbus) = 0;    gx = gy+(Jh.')*(H_m*gmu-mu);    Jd = [D2xLms+(Jh.')*(H_m*Jh),-Jg.';-Jg,Z3];    % reference angle for the actual system    gx(SW.refbus) = 0;    Jd(SW.refbus,:) = 0;    Jd(:,SW.refbus) = 0;    %Jd = Jd + sparse(SW.refbus,SW.refbus,1,n_y+DAE.m,n_y+DAE.m);    Jd(SW.refbus,SW.refbus) = speye(length(SW.refbus));    % LU factorization    [L,U,P] = lu(Jd);    % variable increments    Dx = -U\(L\(P*[gx; -DAE.g]));    Ds = -(gmu+Jh*Dx([1:n_y]));    Dm = -mu-H_m*Ds;    % centering correction    a1 = find(Ds < 0);    a2 = find(Dm < 0);    if isempty(a1), ratio1 = 1; else, ratio1 = -s(a1)./Ds(a1);   end    if isempty(a2), ratio2 = 1; else, ratio2 = -mu(a2)./Dm(a2); end    alpha_P = min(1,gamma*min(ratio1));    alpha_D = min(1,gamma*min(ratio2));    c_gap_af = [s + alpha_P*Ds]'*[mu + alpha_D*Dm];    c_gap = s'*mu;    ms = min((c_gap_af/c_gap)^2,0.2)*c_gap_af/n_s;    gs = mu+(Ds.*Dm-ms)./s;    % -------------------    % Corrector Step    % -------------------    % new increment for variable y    gx = gy +(Jh.')*(H_m*gmu-gs);    gx(SW.refbus) = 0;    % variable increments    Dx = -U\(L\(P*[gx; -DAE.g]));    Ds = -(gmu+Jh*Dx([1:n_y]));    Dm = -gs-H_m*Ds;  end  % =======================================================================  % Variable Increments  % =======================================================================  Dy  = Dx(nY);         idx = DAE.m;            % curr. sys.  DQg = Dx(idx+nG);     idx = idx + n_gen;  DPs = Dx(idx+nS);     idx = idx + Supply.n;  DPd = Dx(idx+nD);     idx = idx + Demand.n;  if Rsrv.n, DPr = Dx(idx+nR);    idx = idx + Rsrv.n;    end  Dro = Dx(1+idx:end);                          % Lag. mult.  % =======================================================================  % Updating the Variables  % =======================================================================  % Step Length Parameters [alpha_P & alpha_D]  %________________________________________________________________________  a1 = find(Ds < 0);  a2 = find(Dm < 0);  if isempty(a1), ratio1 = 1; else, ratio1 = (-s(a1)./Ds(a1));   end  if isempty(a2), ratio2 = 1; else, ratio2 = (-mu(a2)./Dm(a2)); end  alpha_P = min(1,gamma*min(ratio1));  alpha_D = min(1,gamma*min(ratio2));  % New primal variables  %________________________________________________________________________  DAE.y = DAE.y + alpha_P*Dy;  Ps = Ps + alpha_P*DPs;  Pd = Pd + alpha_P*DPd;  Qg = Qg + alpha_P*DQg;  if Rsrv.n, Pr = Pr + alpha_P*DPr; end  s = s + alpha_P*Ds;  % New dual variables  %________________________________________________________________________  ro = ro + alpha_D*Dro;  mu = mu + alpha_D*Dm;  % Objective Function  %________________________________________________________________________  s(find(s == 0)) = epsilon_mu;  Fixd_c = sum(Csa) - sum(Cda) + sum(Dsa) - sum(Dda);  Prop_c = Csb'*Ps  - Cdb'*Pd + Dsb'*Qg(nS) - Ddb'*(qonp.*Pd);  TieBreaking = (sum(KTBS.*Ps.*Ps) - sum(KTBD.*Pd.*Pd));  Quad_c = Csc'*(Ps.*Ps) - Cdc'*(Pd.*Pd) - Ddc'*(qonp.*qonp.*Pd.*Pd);  Quad_q = Dsc'*(Qg(nS).*Qg(nS));  if Rsrv.n, Reserve = Cr'*Pr; else, Reserve = 0; end  G_obj = (Fixd_c+Prop_c+Quad_c+Quad_q+TieBreaking+Reserve)-ms*sum(log(s));  % =======================================================================  % Reducing the Barrier Parameter  % =======================================================================  sigma = max(0.99*sigma, 0.1);     % Centering Parameter  c_gap = s'*mu;                    % Complementarity Gap  ms = min(abs(sigma*c_gap/n_s),1); % Evaluation of the Barrier Parameter  % =======================================================================  % Testing for Convergence  % =======================================================================  test1  = ms <= epsilon_mu;  norma2 = norm(Dx,inf);  test2  = norma2 <= epsilon_2;  norma3 = norm(DAE.g,inf);  test3  = norma3 <= epsilon_1;  norma4 = abs(G_obj-G_obj_k_1)/(1+abs(G_obj));  test4  = norma4 <= epsilon_2;  if test1 & test2 & test3 & test4, break, end  % Displaying Convergence Tests  %________________________________________________________________________  iteration = iteration + 1;  fm_status('opf','update',[iteration, ms, norma2, norma3, norma4], ...            iteration)  if OPF.show    fm_disp(['Iter. =',fvar(iteration,5),'  mu =', fvar(ms,8), ...             '  |dy| =', fvar(norma2,8), '  |f(y)| =', ...             fvar(norma3,8),'  |dG(y)| =' fvar(norma4,8)])  end  if iteration > iter_max, break, endend% Updating Demand.con & Supply.con%____________________________________________________________________________if Settings.matlab, warning('on'); endDemand = pset(Demand,Pd);Supply = pset(Supply,Ps);Rsrv = pset(Rsrv,Pr);MVA = Settings.mva;Pay = ro(Bus.a).*Line.p*MVA;ISOPay = sum(Pay);Iij  = sqrt(Iij);Iji  = sqrt(Iji);Iijmax  = sqrt(Iijmax);% Computation of Nodal Congestion Prices (NCPs)%____________________________________________________________________________fm_setgy(SW.refbus)dH_dtV(SW.refbus,:) = 0;OPF.NCP = -DAE.Gy'\dH_dtV;OPF.obj = G_obj;OPF.ms = ms;OPF.dy = norma2;OPF.dF = norma3;OPF.dG = norma4;OPF.iter = iteration;SNB.init = 0;LIB.init = 0;CPF.init = 0;OPF.init = 1;% set Pg, Qg, Pl and QlBus.Pl = OPF.basepl*Snapshot(1).Pl + sparse(Demand.bus,1,Pd,n1,1);Bus.Ql = OPF.basepl*Snapshot(1).Ql + sparse(Demand.bus,1,Pd.*qonp,n1,1);Bus.Pg = OPF.basepg*Snapshot(1).Pg + sparse(Supply.bus,1,Ps,n1,1);Bus.Qg = OPF.basepg*Snapshot(1).Qg + sparse(busG,1,Qg,n1,1);% Display Results%____________________________________________________________________________if (Settings.showlf | OPF.show) & clpsat.showopf  OPF.report = cell(1,1);  OPF.report{1,1} = ['TTL = ', ...                     fvar(sum(Pd)+totp(PQ),8), ' [p.u.]'];  if ~noDem    OPF.report{2,1} = ['Total demand = ',fvar(sum(Pd),8), ' [p.u.]'];  end  OPF.report{2+(~noDem),1} = ['Bid Losses = ', ...                      fvar(sum(Line.p)-Snapshot(1).Ploss,8), ' [p.u.]'];  OPF.report{3+(~noDem),1} = ['Total Losses = ', ...                      fvar(sum(Line.p),8), ' [p.u.]'];  fm_disp  fm_disp('----------------------------------------------------------------')  Settings.lftime = toc;  Settings.forcepq = forcepq;  if Fig.stat, fm_stat; end  if iteration > iter_max    fm_disp('IPM-OPF: Method did not converge',2)  elseif Fig.main    if ~get(Fig.main,'UserData')      fm_disp('IPM-OPF: Interrupted',2)    else      fm_disp(['IPM-OPF completed in ',num2str(toc),' s'],1)    end  else    fm_disp(['IPM-OPF completed in ',num2str(toc),' s'],1)    if Settings.showlf == 1      fm_stat(OPF.report);    else      if Settings.beep, beep, end,    end  end  fm_status('opf','close')else  if iteration > iter_max    fm_disp('IPM-OPF: Method did not converge',2)  elseif Fig.main    if ~get(Fig.main,'UserData')      fm_disp('IPM-OPF: Interrupted',2)    else      fm_disp(['IPM-OPF completed in ',num2str(toc),' s'],1)    end  else    fm_disp(['IPM-OPF completed in ',num2str(toc),' s'],1)  endendif iteration > iter_max, OPF.conv = 0; else, OPF.conv = 1; endif Rsrv.n,  OPF.guess = [s; mu; DAE.y; Qg; Ps; Pd; Pr; ro];else  OPF.guess = [s; mu; DAE.y; Qg; Ps; Pd; ro];endOPF.LMP = -ro(1:n1);if noDem, Demand = restore(Demand); endif ~OPF.basepl  PQ = pqreset(PQ,'all');endif ~OPF.basepg  SW = swreset(SW,'all');  PV = pvreset(PV,'all');end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -