⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 integer.h

📁 lots Elliptic curve cryptography codes. Use Visual c++ to compile
💻 H
字号:
#ifndef CRYPTOPP_INTEGER_H#define CRYPTOPP_INTEGER_H/** \file */#include "cryptlib.h"#include "secblock.h"#include <iosfwd>#include <algorithm>NAMESPACE_BEGIN(CryptoPP)struct InitializeInteger	// used to initialize static variables{	InitializeInteger();};typedef SecBlock<word, AllocatorWithCleanup<word, CRYPTOPP_BOOL_X86> > IntegerSecBlock;//! multiple precision integer and basic arithmetics/*! This class can represent positive and negative integers	with absolute value less than (256**sizeof(word)) ** (256**sizeof(int)).	\nosubgrouping*/class CRYPTOPP_DLL Integer : private InitializeInteger, public ASN1Object{public:	//! \name ENUMS, EXCEPTIONS, and TYPEDEFS	//@{		//! division by zero exception		class DivideByZero : public Exception		{		public:			DivideByZero() : Exception(OTHER_ERROR, "Integer: division by zero") {}		};		//!		class RandomNumberNotFound : public Exception		{		public:			RandomNumberNotFound() : Exception(OTHER_ERROR, "Integer: no integer satisfies the given parameters") {}		};		//!		enum Sign {POSITIVE=0, NEGATIVE=1};		//!		enum Signedness {		//!			UNSIGNED,		//!			SIGNED};		//!		enum RandomNumberType {		//!			ANY,		//!			PRIME};	//@}	//! \name CREATORS	//@{		//! creates the zero integer		Integer();		//! copy constructor		Integer(const Integer& t);		//! convert from signed long		Integer(signed long value);		//! convert from lword		Integer(Sign s, lword value);		//! convert from two words		Integer(Sign s, word highWord, word lowWord);		//! convert from string		/*! str can be in base 2, 8, 10, or 16.  Base is determined by a			case insensitive suffix of 'h', 'o', or 'b'.  No suffix means base 10.		*/		explicit Integer(const char *str);		explicit Integer(const wchar_t *str);		//! convert from big-endian byte array		Integer(const byte *encodedInteger, size_t byteCount, Signedness s=UNSIGNED);		//! convert from big-endian form stored in a BufferedTransformation		Integer(BufferedTransformation &bt, size_t byteCount, Signedness s=UNSIGNED);		//! convert from BER encoded byte array stored in a BufferedTransformation object		explicit Integer(BufferedTransformation &bt);		//! create a random integer		/*! The random integer created is uniformly distributed over [0, 2**bitcount). */		Integer(RandomNumberGenerator &rng, size_t bitcount);		//! avoid calling constructors for these frequently used integers		static const Integer & CRYPTOPP_API Zero();		//! avoid calling constructors for these frequently used integers		static const Integer & CRYPTOPP_API One();		//! avoid calling constructors for these frequently used integers		static const Integer & CRYPTOPP_API Two();		//! create a random integer of special type		/*! Ideally, the random integer created should be uniformly distributed			over {x | min <= x <= max and x is of rnType and x % mod == equiv}.			However the actual distribution may not be uniform because sequential			search is used to find an appropriate number from a random starting			point.			May return (with very small probability) a pseudoprime when a prime			is requested and max > lastSmallPrime*lastSmallPrime (lastSmallPrime			is declared in nbtheory.h).			\throw RandomNumberNotFound if the set is empty.		*/		Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType=ANY, const Integer &equiv=Zero(), const Integer &mod=One());		//! return the integer 2**e		static Integer CRYPTOPP_API Power2(size_t e);	//@}	//! \name ENCODE/DECODE	//@{		//! minimum number of bytes to encode this integer		/*! MinEncodedSize of 0 is 1 */		size_t MinEncodedSize(Signedness=UNSIGNED) const;		//! encode in big-endian format		/*! unsigned means encode absolute value, signed means encode two's complement if negative.			if outputLen < MinEncodedSize, the most significant bytes will be dropped			if outputLen > MinEncodedSize, the most significant bytes will be padded		*/		void Encode(byte *output, size_t outputLen, Signedness=UNSIGNED) const;		//!		void Encode(BufferedTransformation &bt, size_t outputLen, Signedness=UNSIGNED) const;		//! encode using Distinguished Encoding Rules, put result into a BufferedTransformation object		void DEREncode(BufferedTransformation &bt) const;		//! encode absolute value as big-endian octet string		void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const;		//! encode absolute value in OpenPGP format, return length of output		size_t OpenPGPEncode(byte *output, size_t bufferSize) const;		//! encode absolute value in OpenPGP format, put result into a BufferedTransformation object		size_t OpenPGPEncode(BufferedTransformation &bt) const;		//!		void Decode(const byte *input, size_t inputLen, Signedness=UNSIGNED);		//! 		//* Precondition: bt.MaxRetrievable() >= inputLen		void Decode(BufferedTransformation &bt, size_t inputLen, Signedness=UNSIGNED);		//!		void BERDecode(const byte *input, size_t inputLen);		//!		void BERDecode(BufferedTransformation &bt);		//! decode nonnegative value as big-endian octet string		void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length);		class OpenPGPDecodeErr : public Exception		{		public: 			OpenPGPDecodeErr() : Exception(INVALID_DATA_FORMAT, "OpenPGP decode error") {}		};		//!		void OpenPGPDecode(const byte *input, size_t inputLen);		//!		void OpenPGPDecode(BufferedTransformation &bt);	//@}	//! \name ACCESSORS	//@{		//! return true if *this can be represented as a signed long		bool IsConvertableToLong() const;		//! return equivalent signed long if possible, otherwise undefined		signed long ConvertToLong() const;		//! number of significant bits = floor(log2(abs(*this))) + 1		unsigned int BitCount() const;		//! number of significant bytes = ceiling(BitCount()/8)		unsigned int ByteCount() const;		//! number of significant words = ceiling(ByteCount()/sizeof(word))		unsigned int WordCount() const;		//! return the i-th bit, i=0 being the least significant bit		bool GetBit(size_t i) const;		//! return the i-th byte		byte GetByte(size_t i) const;		//! return n lowest bits of *this >> i		lword GetBits(size_t i, size_t n) const;		//!		bool IsZero() const {return !*this;}		//!		bool NotZero() const {return !IsZero();}		//!		bool IsNegative() const {return sign == NEGATIVE;}		//!		bool NotNegative() const {return !IsNegative();}		//!		bool IsPositive() const {return NotNegative() && NotZero();}		//!		bool NotPositive() const {return !IsPositive();}		//!		bool IsEven() const {return GetBit(0) == 0;}		//!		bool IsOdd() const	{return GetBit(0) == 1;}	//@}	//! \name MANIPULATORS	//@{		//!		Integer&  operator=(const Integer& t);		//!		Integer&  operator+=(const Integer& t);		//!		Integer&  operator-=(const Integer& t);		//!		Integer&  operator*=(const Integer& t)	{return *this = Times(t);}		//!		Integer&  operator/=(const Integer& t)	{return *this = DividedBy(t);}		//!		Integer&  operator%=(const Integer& t)	{return *this = Modulo(t);}		//!		Integer&  operator/=(word t)  {return *this = DividedBy(t);}		//!		Integer&  operator%=(word t)  {return *this = Integer(POSITIVE, 0, Modulo(t));}		//!		Integer&  operator<<=(size_t);		//!		Integer&  operator>>=(size_t);		//!		void Randomize(RandomNumberGenerator &rng, size_t bitcount);		//!		void Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max);		//! set this Integer to a random element of {x | min <= x <= max and x is of rnType and x % mod == equiv}		/*! returns false if the set is empty */		bool Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv=Zero(), const Integer &mod=One());		bool GenerateRandomNoThrow(RandomNumberGenerator &rng, const NameValuePairs &params = g_nullNameValuePairs);		void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &params = g_nullNameValuePairs)		{			if (!GenerateRandomNoThrow(rng, params))				throw RandomNumberNotFound();		}		//! set the n-th bit to value		void SetBit(size_t n, bool value=1);		//! set the n-th byte to value		void SetByte(size_t n, byte value);		//!		void Negate();		//!		void SetPositive() {sign = POSITIVE;}		//!		void SetNegative() {if (!!(*this)) sign = NEGATIVE;}		//!		void swap(Integer &a);	//@}	//! \name UNARY OPERATORS	//@{		//!		bool		operator!() const;		//!		Integer 	operator+() const {return *this;}		//!		Integer 	operator-() const;		//!		Integer&	operator++();		//!		Integer&	operator--();		//!		Integer 	operator++(int) {Integer temp = *this; ++*this; return temp;}		//!		Integer 	operator--(int) {Integer temp = *this; --*this; return temp;}	//@}	//! \name BINARY OPERATORS	//@{		//! signed comparison		/*! \retval -1 if *this < a			\retval  0 if *this = a			\retval  1 if *this > a		*/		int Compare(const Integer& a) const;		//!		Integer Plus(const Integer &b) const;		//!		Integer Minus(const Integer &b) const;		//!		Integer Times(const Integer &b) const;		//!		Integer DividedBy(const Integer &b) const;		//!		Integer Modulo(const Integer &b) const;		//!		Integer DividedBy(word b) const;		//!		word Modulo(word b) const;		//!		Integer operator>>(size_t n) const	{return Integer(*this)>>=n;}		//!		Integer operator<<(size_t n) const	{return Integer(*this)<<=n;}	//@}	//! \name OTHER ARITHMETIC FUNCTIONS	//@{		//!		Integer AbsoluteValue() const;		//!		Integer Doubled() const {return Plus(*this);}		//!		Integer Squared() const {return Times(*this);}		//! extract square root, if negative return 0, else return floor of square root		Integer SquareRoot() const;		//! return whether this integer is a perfect square		bool IsSquare() const;		//! is 1 or -1		bool IsUnit() const;		//! return inverse if 1 or -1, otherwise return 0		Integer MultiplicativeInverse() const;		//! modular multiplication		CRYPTOPP_DLL friend Integer CRYPTOPP_API a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m);		//! modular exponentiation		CRYPTOPP_DLL friend Integer CRYPTOPP_API a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m);		//! calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))		static void CRYPTOPP_API Divide(Integer &r, Integer &q, const Integer &a, const Integer &d);		//! use a faster division algorithm when divisor is short		static void CRYPTOPP_API Divide(word &r, Integer &q, const Integer &a, word d);		//! returns same result as Divide(r, q, a, Power2(n)), but faster		static void CRYPTOPP_API DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n);		//! greatest common divisor		static Integer CRYPTOPP_API Gcd(const Integer &a, const Integer &n);		//! calculate multiplicative inverse of *this mod n		Integer InverseMod(const Integer &n) const;		//!		word InverseMod(word n) const;	//@}	//! \name INPUT/OUTPUT	//@{		//!		friend CRYPTOPP_DLL std::istream& CRYPTOPP_API operator>>(std::istream& in, Integer &a);		//!		friend CRYPTOPP_DLL std::ostream& CRYPTOPP_API operator<<(std::ostream& out, const Integer &a);	//@}private:	friend class ModularArithmetic;	friend class MontgomeryRepresentation;	friend class HalfMontgomeryRepresentation;	Integer(word value, size_t length);	int PositiveCompare(const Integer &t) const;	friend void PositiveAdd(Integer &sum, const Integer &a, const Integer &b);	friend void PositiveSubtract(Integer &diff, const Integer &a, const Integer &b);	friend void PositiveMultiply(Integer &product, const Integer &a, const Integer &b);	friend void PositiveDivide(Integer &remainder, Integer &quotient, const Integer &dividend, const Integer &divisor);	IntegerSecBlock reg;	Sign sign;};//!inline bool operator==(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)==0;}//!inline bool operator!=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)!=0;}//!inline bool operator> (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)> 0;}//!inline bool operator>=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)>=0;}//!inline bool operator< (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)< 0;}//!inline bool operator<=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)<=0;}//!inline CryptoPP::Integer operator+(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Plus(b);}//!inline CryptoPP::Integer operator-(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Minus(b);}//!inline CryptoPP::Integer operator*(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Times(b);}//!inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.DividedBy(b);}//!inline CryptoPP::Integer operator%(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Modulo(b);}//!inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, CryptoPP::word b) {return a.DividedBy(b);}//!inline CryptoPP::word    operator%(const CryptoPP::Integer &a, CryptoPP::word b) {return a.Modulo(b);}NAMESPACE_END#ifndef __BORLANDC__NAMESPACE_BEGIN(std)inline void swap(CryptoPP::Integer &a, CryptoPP::Integer &b){	a.swap(b);}NAMESPACE_END#endif#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -