⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rabin.cpp

📁 lots Elliptic curve cryptography codes. Use Visual c++ to compile
💻 CPP
字号:
// rabin.cpp - written and placed in the public domain by Wei Dai#include "pch.h"#include "rabin.h"#include "nbtheory.h"#include "asn.h"#include "sha.h"#include "modarith.h"NAMESPACE_BEGIN(CryptoPP)void RabinFunction::BERDecode(BufferedTransformation &bt){	BERSequenceDecoder seq(bt);	m_n.BERDecode(seq);	m_r.BERDecode(seq);	m_s.BERDecode(seq);	seq.MessageEnd();}void RabinFunction::DEREncode(BufferedTransformation &bt) const{	DERSequenceEncoder seq(bt);	m_n.DEREncode(seq);	m_r.DEREncode(seq);	m_s.DEREncode(seq);	seq.MessageEnd();}Integer RabinFunction::ApplyFunction(const Integer &in) const{	DoQuickSanityCheck();	Integer out = in.Squared()%m_n;	if (in.IsOdd())		out = out*m_r%m_n;	if (Jacobi(in, m_n)==-1)		out = out*m_s%m_n;	return out;}bool RabinFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const{	bool pass = true;	pass = pass && m_n > Integer::One() && m_n%4 == 1;	pass = pass && m_r > Integer::One() && m_r < m_n;	pass = pass && m_s > Integer::One() && m_s < m_n;	if (level >= 1)		pass = pass && Jacobi(m_r, m_n) == -1 && Jacobi(m_s, m_n) == -1;	return pass;}bool RabinFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const{	return GetValueHelper(this, name, valueType, pValue).Assignable()		CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)		CRYPTOPP_GET_FUNCTION_ENTRY(QuadraticResidueModPrime1)		CRYPTOPP_GET_FUNCTION_ENTRY(QuadraticResidueModPrime2)		;}void RabinFunction::AssignFrom(const NameValuePairs &source){	AssignFromHelper(this, source)		CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)		CRYPTOPP_SET_FUNCTION_ENTRY(QuadraticResidueModPrime1)		CRYPTOPP_SET_FUNCTION_ENTRY(QuadraticResidueModPrime2)		;}// *****************************************************************************// private key operations:// generate a random private keyvoid InvertibleRabinFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg){	int modulusSize = 2048;	alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);	if (modulusSize < 16)		throw InvalidArgument("InvertibleRabinFunction: specified modulus size is too small");	// VC70 workaround: putting these after primeParam causes overlapped stack allocation	bool rFound=false, sFound=false;	Integer t=2;	AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize)		("EquivalentTo", 3)("Mod", 4);	m_p.GenerateRandom(rng, primeParam);	m_q.GenerateRandom(rng, primeParam);	while (!(rFound && sFound))	{		int jp = Jacobi(t, m_p);		int jq = Jacobi(t, m_q);		if (!rFound && jp==1 && jq==-1)		{			m_r = t;			rFound = true;		}		if (!sFound && jp==-1 && jq==1)		{			m_s = t;			sFound = true;		}		++t;	}	m_n = m_p * m_q;	m_u = m_q.InverseMod(m_p);}void InvertibleRabinFunction::BERDecode(BufferedTransformation &bt){	BERSequenceDecoder seq(bt);	m_n.BERDecode(seq);	m_r.BERDecode(seq);	m_s.BERDecode(seq);	m_p.BERDecode(seq);	m_q.BERDecode(seq);	m_u.BERDecode(seq);	seq.MessageEnd();}void InvertibleRabinFunction::DEREncode(BufferedTransformation &bt) const{	DERSequenceEncoder seq(bt);	m_n.DEREncode(seq);	m_r.DEREncode(seq);	m_s.DEREncode(seq);	m_p.DEREncode(seq);	m_q.DEREncode(seq);	m_u.DEREncode(seq);	seq.MessageEnd();}Integer InvertibleRabinFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &in) const{	DoQuickSanityCheck();	ModularArithmetic modn(m_n);	Integer r(rng, Integer::One(), m_n - Integer::One());	r = modn.Square(r);	Integer r2 = modn.Square(r);	Integer c = modn.Multiply(in, r2);		// blind	Integer cp=c%m_p, cq=c%m_q;	int jp = Jacobi(cp, m_p);	int jq = Jacobi(cq, m_q);	if (jq==-1)	{		cp = cp*EuclideanMultiplicativeInverse(m_r, m_p)%m_p;		cq = cq*EuclideanMultiplicativeInverse(m_r, m_q)%m_q;	}	if (jp==-1)	{		cp = cp*EuclideanMultiplicativeInverse(m_s, m_p)%m_p;		cq = cq*EuclideanMultiplicativeInverse(m_s, m_q)%m_q;	}	cp = ModularSquareRoot(cp, m_p);	cq = ModularSquareRoot(cq, m_q);	if (jp==-1)		cp = m_p-cp;	Integer out = CRT(cq, m_q, cp, m_p, m_u);	out = modn.Divide(out, r);	// unblind	if ((jq==-1 && out.IsEven()) || (jq==1 && out.IsOdd()))		out = m_n-out;	return out;}bool InvertibleRabinFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const{	bool pass = RabinFunction::Validate(rng, level);	pass = pass && m_p > Integer::One() && m_p%4 == 3 && m_p < m_n;	pass = pass && m_q > Integer::One() && m_q%4 == 3 && m_q < m_n;	pass = pass && m_u.IsPositive() && m_u < m_p;	if (level >= 1)	{		pass = pass && m_p * m_q == m_n;		pass = pass && m_u * m_q % m_p == 1;		pass = pass && Jacobi(m_r, m_p) == 1;		pass = pass && Jacobi(m_r, m_q) == -1;		pass = pass && Jacobi(m_s, m_p) == -1;		pass = pass && Jacobi(m_s, m_q) == 1;	}	if (level >= 2)		pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);	return pass;}bool InvertibleRabinFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const{	return GetValueHelper<RabinFunction>(this, name, valueType, pValue).Assignable()		CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)		CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)		CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)		;}void InvertibleRabinFunction::AssignFrom(const NameValuePairs &source){	AssignFromHelper<RabinFunction>(this, source)		CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)		CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)		CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)		;}NAMESPACE_END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -