⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gf2n.h

📁 lots Elliptic curve cryptography codes. Use Visual c++ to compile
💻 H
字号:
#ifndef CRYPTOPP_GF2N_H#define CRYPTOPP_GF2N_H/*! \file */#include "cryptlib.h"#include "secblock.h"#include "misc.h"#include "algebra.h"#include <iosfwd>NAMESPACE_BEGIN(CryptoPP)//! Polynomial with Coefficients in GF(2)/*!	\nosubgrouping */class CRYPTOPP_DLL PolynomialMod2{public:	//! \name ENUMS, EXCEPTIONS, and TYPEDEFS	//@{		//! divide by zero exception		class DivideByZero : public Exception		{		public:			DivideByZero() : Exception(OTHER_ERROR, "PolynomialMod2: division by zero") {}		};		typedef unsigned int RandomizationParameter;	//@}	//! \name CREATORS	//@{		//! creates the zero polynomial		PolynomialMod2();		//! copy constructor		PolynomialMod2(const PolynomialMod2& t);		//! convert from word		/*! value should be encoded with the least significant bit as coefficient to x^0			and most significant bit as coefficient to x^(WORD_BITS-1)			bitLength denotes how much memory to allocate initially		*/		PolynomialMod2(word value, size_t bitLength=WORD_BITS);		//! convert from big-endian byte array		PolynomialMod2(const byte *encodedPoly, size_t byteCount)			{Decode(encodedPoly, byteCount);}		//! convert from big-endian form stored in a BufferedTransformation		PolynomialMod2(BufferedTransformation &encodedPoly, size_t byteCount)			{Decode(encodedPoly, byteCount);}		//! create a random polynomial uniformly distributed over all polynomials with degree less than bitcount		PolynomialMod2(RandomNumberGenerator &rng, size_t bitcount)			{Randomize(rng, bitcount);}		//! return x^i		static PolynomialMod2 CRYPTOPP_API Monomial(size_t i);		//! return x^t0 + x^t1 + x^t2		static PolynomialMod2 CRYPTOPP_API Trinomial(size_t t0, size_t t1, size_t t2);		//! return x^t0 + x^t1 + x^t2 + x^t3 + x^t4		static PolynomialMod2 CRYPTOPP_API Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4);		//! return x^(n-1) + ... + x + 1		static PolynomialMod2 CRYPTOPP_API AllOnes(size_t n);		//!		static const PolynomialMod2 & CRYPTOPP_API Zero();		//!		static const PolynomialMod2 & CRYPTOPP_API One();	//@}	//! \name ENCODE/DECODE	//@{		//! minimum number of bytes to encode this polynomial		/*! MinEncodedSize of 0 is 1 */		unsigned int MinEncodedSize() const {return STDMAX(1U, ByteCount());}		//! encode in big-endian format		/*! if outputLen < MinEncodedSize, the most significant bytes will be dropped			if outputLen > MinEncodedSize, the most significant bytes will be padded		*/		void Encode(byte *output, size_t outputLen) const;		//!		void Encode(BufferedTransformation &bt, size_t outputLen) const;		//!		void Decode(const byte *input, size_t inputLen);		//! 		//* Precondition: bt.MaxRetrievable() >= inputLen		void Decode(BufferedTransformation &bt, size_t inputLen);		//! encode value as big-endian octet string		void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const;		//! decode value as big-endian octet string		void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length);	//@}	//! \name ACCESSORS	//@{		//! number of significant bits = Degree() + 1		unsigned int BitCount() const;		//! number of significant bytes = ceiling(BitCount()/8)		unsigned int ByteCount() const;		//! number of significant words = ceiling(ByteCount()/sizeof(word))		unsigned int WordCount() const;		//! return the n-th bit, n=0 being the least significant bit		bool GetBit(size_t n) const {return GetCoefficient(n)!=0;}		//! return the n-th byte		byte GetByte(size_t n) const;		//! the zero polynomial will return a degree of -1		signed int Degree() const {return BitCount()-1;}		//! degree + 1		unsigned int CoefficientCount() const {return BitCount();}		//! return coefficient for x^i		int GetCoefficient(size_t i) const			{return (i/WORD_BITS < reg.size()) ? int(reg[i/WORD_BITS] >> (i % WORD_BITS)) & 1 : 0;}		//! return coefficient for x^i		int operator[](unsigned int i) const {return GetCoefficient(i);}		//!		bool IsZero() const {return !*this;}		//!		bool Equals(const PolynomialMod2 &rhs) const;	//@}	//! \name MANIPULATORS	//@{		//!		PolynomialMod2&  operator=(const PolynomialMod2& t);		//!		PolynomialMod2&  operator&=(const PolynomialMod2& t);		//!		PolynomialMod2&  operator^=(const PolynomialMod2& t);		//!		PolynomialMod2&  operator+=(const PolynomialMod2& t) {return *this ^= t;}		//!		PolynomialMod2&  operator-=(const PolynomialMod2& t) {return *this ^= t;}		//!		PolynomialMod2&  operator*=(const PolynomialMod2& t);		//!		PolynomialMod2&  operator/=(const PolynomialMod2& t);		//!		PolynomialMod2&  operator%=(const PolynomialMod2& t);		//!		PolynomialMod2&  operator<<=(unsigned int);		//!		PolynomialMod2&  operator>>=(unsigned int);		//!		void Randomize(RandomNumberGenerator &rng, size_t bitcount);		//!		void SetBit(size_t i, int value = 1);		//! set the n-th byte to value		void SetByte(size_t n, byte value);		//!		void SetCoefficient(size_t i, int value) {SetBit(i, value);}		//!		void swap(PolynomialMod2 &a) {reg.swap(a.reg);}	//@}	//! \name UNARY OPERATORS	//@{		//!		bool			operator!() const;		//!		PolynomialMod2	operator+() const {return *this;}		//!		PolynomialMod2	operator-() const {return *this;}	//@}	//! \name BINARY OPERATORS	//@{		//!		PolynomialMod2 And(const PolynomialMod2 &b) const;		//!		PolynomialMod2 Xor(const PolynomialMod2 &b) const;		//!		PolynomialMod2 Plus(const PolynomialMod2 &b) const {return Xor(b);}		//!		PolynomialMod2 Minus(const PolynomialMod2 &b) const {return Xor(b);}		//!		PolynomialMod2 Times(const PolynomialMod2 &b) const;		//!		PolynomialMod2 DividedBy(const PolynomialMod2 &b) const;		//!		PolynomialMod2 Modulo(const PolynomialMod2 &b) const;		//!		PolynomialMod2 operator>>(unsigned int n) const;		//!		PolynomialMod2 operator<<(unsigned int n) const;	//@}	//! \name OTHER ARITHMETIC FUNCTIONS	//@{		//! sum modulo 2 of all coefficients		unsigned int Parity() const;		//! check for irreducibility		bool IsIrreducible() const;		//! is always zero since we're working modulo 2		PolynomialMod2 Doubled() const {return Zero();}		//!		PolynomialMod2 Squared() const;		//! only 1 is a unit		bool IsUnit() const {return Equals(One());}		//! return inverse if *this is a unit, otherwise return 0		PolynomialMod2 MultiplicativeInverse() const {return IsUnit() ? One() : Zero();}		//! greatest common divisor		static PolynomialMod2 CRYPTOPP_API Gcd(const PolynomialMod2 &a, const PolynomialMod2 &n);		//! calculate multiplicative inverse of *this mod n		PolynomialMod2 InverseMod(const PolynomialMod2 &) const;		//! calculate r and q such that (a == d*q + r) && (deg(r) < deg(d))		static void CRYPTOPP_API Divide(PolynomialMod2 &r, PolynomialMod2 &q, const PolynomialMod2 &a, const PolynomialMod2 &d);	//@}	//! \name INPUT/OUTPUT	//@{		//!		friend std::ostream& operator<<(std::ostream& out, const PolynomialMod2 &a);	//@}private:	friend class GF2NT;	SecWordBlock reg;};//!inline bool operator==(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b){return a.Equals(b);}//!inline bool operator!=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b){return !(a==b);}//! compares degreeinline bool operator> (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b){return a.Degree() > b.Degree();}//! compares degreeinline bool operator>=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b){return a.Degree() >= b.Degree();}//! compares degreeinline bool operator< (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b){return a.Degree() < b.Degree();}//! compares degreeinline bool operator<=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b){return a.Degree() <= b.Degree();}//!inline CryptoPP::PolynomialMod2 operator&(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.And(b);}//!inline CryptoPP::PolynomialMod2 operator^(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Xor(b);}//!inline CryptoPP::PolynomialMod2 operator+(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Plus(b);}//!inline CryptoPP::PolynomialMod2 operator-(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Minus(b);}//!inline CryptoPP::PolynomialMod2 operator*(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Times(b);}//!inline CryptoPP::PolynomialMod2 operator/(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.DividedBy(b);}//!inline CryptoPP::PolynomialMod2 operator%(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Modulo(b);}// CodeWarrior 8 workaround: put these template instantiations after overloaded operator declarations,// but before the use of QuotientRing<EuclideanDomainOf<PolynomialMod2> > for VC .NET 2003CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<PolynomialMod2>;CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<PolynomialMod2>;CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<PolynomialMod2>;CRYPTOPP_DLL_TEMPLATE_CLASS EuclideanDomainOf<PolynomialMod2>;CRYPTOPP_DLL_TEMPLATE_CLASS QuotientRing<EuclideanDomainOf<PolynomialMod2> >;//! GF(2^n) with Polynomial Basisclass CRYPTOPP_DLL GF2NP : public QuotientRing<EuclideanDomainOf<PolynomialMod2> >{public:	GF2NP(const PolynomialMod2 &modulus);	virtual GF2NP * Clone() const {return new GF2NP(*this);}	virtual void DEREncode(BufferedTransformation &bt) const		{assert(false);}	// no ASN.1 syntax yet for general polynomial basis	void DEREncodeElement(BufferedTransformation &out, const Element &a) const;	void BERDecodeElement(BufferedTransformation &in, Element &a) const;	bool Equal(const Element &a, const Element &b) const		{assert(a.Degree() < m_modulus.Degree() && b.Degree() < m_modulus.Degree()); return a.Equals(b);}	bool IsUnit(const Element &a) const		{assert(a.Degree() < m_modulus.Degree()); return !!a;}	unsigned int MaxElementBitLength() const		{return m;}	unsigned int MaxElementByteLength() const		{return (unsigned int)BitsToBytes(MaxElementBitLength());}	Element SquareRoot(const Element &a) const;	Element HalfTrace(const Element &a) const;	// returns z such that z^2 + z == a	Element SolveQuadraticEquation(const Element &a) const;protected:	unsigned int m;};//! GF(2^n) with Trinomial Basisclass CRYPTOPP_DLL GF2NT : public GF2NP{public:	// polynomial modulus = x^t0 + x^t1 + x^t2, t0 > t1 > t2	GF2NT(unsigned int t0, unsigned int t1, unsigned int t2);	GF2NP * Clone() const {return new GF2NT(*this);}	void DEREncode(BufferedTransformation &bt) const;	const Element& Multiply(const Element &a, const Element &b) const;	const Element& Square(const Element &a) const		{return Reduced(a.Squared());}	const Element& MultiplicativeInverse(const Element &a) const;private:	const Element& Reduced(const Element &a) const;	unsigned int t0, t1;	mutable PolynomialMod2 result;};//! GF(2^n) with Pentanomial Basisclass CRYPTOPP_DLL GF2NPP : public GF2NP{public:	// polynomial modulus = x^t0 + x^t1 + x^t2 + x^t3 + x^t4, t0 > t1 > t2 > t3 > t4	GF2NPP(unsigned int t0, unsigned int t1, unsigned int t2, unsigned int t3, unsigned int t4)		: GF2NP(PolynomialMod2::Pentanomial(t0, t1, t2, t3, t4)), t0(t0), t1(t1), t2(t2), t3(t3) {}	GF2NP * Clone() const {return new GF2NPP(*this);}	void DEREncode(BufferedTransformation &bt) const;private:	unsigned int t0, t1, t2, t3;};// construct new GF2NP from the ASN.1 sequence Characteristic-twoCRYPTOPP_DLL GF2NP * CRYPTOPP_API BERDecodeGF2NP(BufferedTransformation &bt);NAMESPACE_END#ifndef __BORLANDC__NAMESPACE_BEGIN(std)template<> inline void swap(CryptoPP::PolynomialMod2 &a, CryptoPP::PolynomialMod2 &b){	a.swap(b);}NAMESPACE_END#endif#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -