📄 nbtheory.h
字号:
// nbtheory.h - written and placed in the public domain by Wei Dai#ifndef CRYPTOPP_NBTHEORY_H#define CRYPTOPP_NBTHEORY_H#include "integer.h"#include "algparam.h"NAMESPACE_BEGIN(CryptoPP)// obtain pointer to small prime table and get its sizeCRYPTOPP_DLL const word16 * CRYPTOPP_API GetPrimeTable(unsigned int &size);// ************ primality testing ****************// generate a provable primeCRYPTOPP_DLL Integer CRYPTOPP_API MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits);CRYPTOPP_DLL Integer CRYPTOPP_API MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits);CRYPTOPP_DLL bool CRYPTOPP_API IsSmallPrime(const Integer &p);// returns true if p is divisible by some prime less than bound// bound not be greater than the largest entry in the prime tableCRYPTOPP_DLL bool CRYPTOPP_API TrialDivision(const Integer &p, unsigned bound);// returns true if p is NOT divisible by small primesCRYPTOPP_DLL bool CRYPTOPP_API SmallDivisorsTest(const Integer &p);// These is no reason to use these two, use the ones below insteadCRYPTOPP_DLL bool CRYPTOPP_API IsFermatProbablePrime(const Integer &n, const Integer &b);CRYPTOPP_DLL bool CRYPTOPP_API IsLucasProbablePrime(const Integer &n);CRYPTOPP_DLL bool CRYPTOPP_API IsStrongProbablePrime(const Integer &n, const Integer &b);CRYPTOPP_DLL bool CRYPTOPP_API IsStrongLucasProbablePrime(const Integer &n);// Rabin-Miller primality test, i.e. repeating the strong probable prime test // for several rounds with random basesCRYPTOPP_DLL bool CRYPTOPP_API RabinMillerTest(RandomNumberGenerator &rng, const Integer &w, unsigned int rounds);// primality test, used to generate primesCRYPTOPP_DLL bool CRYPTOPP_API IsPrime(const Integer &p);// more reliable than IsPrime(), used to verify primes generated by othersCRYPTOPP_DLL bool CRYPTOPP_API VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level = 1);class CRYPTOPP_DLL PrimeSelector{public: const PrimeSelector *GetSelectorPointer() const {return this;} virtual bool IsAcceptable(const Integer &candidate) const =0;};// use a fast sieve to find the first probable prime in {x | p<=x<=max and x%mod==equiv}// returns true iff successful, value of p is undefined if no such prime existsCRYPTOPP_DLL bool CRYPTOPP_API FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector);CRYPTOPP_DLL unsigned int CRYPTOPP_API PrimeSearchInterval(const Integer &max);CRYPTOPP_DLL AlgorithmParameters CRYPTOPP_API MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength);// ********** other number theoretic functions ************inline Integer GCD(const Integer &a, const Integer &b) {return Integer::Gcd(a,b);}inline bool RelativelyPrime(const Integer &a, const Integer &b) {return Integer::Gcd(a,b) == Integer::One();}inline Integer LCM(const Integer &a, const Integer &b) {return a/Integer::Gcd(a,b)*b;}inline Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b) {return a.InverseMod(b);}// use Chinese Remainder Theorem to calculate x given x mod p and x mod q, and u = inverse of p mod qCRYPTOPP_DLL Integer CRYPTOPP_API CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u);// if b is prime, then Jacobi(a, b) returns 0 if a%b==0, 1 if a is quadratic residue mod b, -1 otherwise// check a number theory book for what Jacobi symbol means when b is not primeCRYPTOPP_DLL int CRYPTOPP_API Jacobi(const Integer &a, const Integer &b);// calculates the Lucas function V_e(p, 1) mod nCRYPTOPP_DLL Integer CRYPTOPP_API Lucas(const Integer &e, const Integer &p, const Integer &n);// calculates x such that m==Lucas(e, x, p*q), p q primes, u=inverse of p mod qCRYPTOPP_DLL Integer CRYPTOPP_API InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u);inline Integer ModularExponentiation(const Integer &a, const Integer &e, const Integer &m) {return a_exp_b_mod_c(a, e, m);}// returns x such that x*x%p == a, p primeCRYPTOPP_DLL Integer CRYPTOPP_API ModularSquareRoot(const Integer &a, const Integer &p);// returns x such that a==ModularExponentiation(x, e, p*q), p q primes,// and e relatively prime to (p-1)*(q-1)// dp=d%(p-1), dq=d%(q-1), (d is inverse of e mod (p-1)*(q-1))// and u=inverse of p mod qCRYPTOPP_DLL Integer CRYPTOPP_API ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u);// find r1 and r2 such that ax^2 + bx + c == 0 (mod p) for x in {r1, r2}, p prime// returns true if solutions existCRYPTOPP_DLL bool CRYPTOPP_API SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p);// returns log base 2 of estimated number of operations to calculate discrete log or factor a numberCRYPTOPP_DLL unsigned int CRYPTOPP_API DiscreteLogWorkFactor(unsigned int bitlength);CRYPTOPP_DLL unsigned int CRYPTOPP_API FactoringWorkFactor(unsigned int bitlength);// ********************************************************//! generator of prime numbers of special formsclass CRYPTOPP_DLL PrimeAndGenerator{public: PrimeAndGenerator() {} // generate a random prime p of the form 2*q+delta, where delta is 1 or -1 and q is also prime // Precondition: pbits > 5 // warning: this is slow, because primes of this form are harder to find PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits) {Generate(delta, rng, pbits, pbits-1);} // generate a random prime p of the form 2*r*q+delta, where q is also prime // Precondition: qbits > 4 && pbits > qbits PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits) {Generate(delta, rng, pbits, qbits);} void Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits); const Integer& Prime() const {return p;} const Integer& SubPrime() const {return q;} const Integer& Generator() const {return g;}private: Integer p, q, g;};NAMESPACE_END#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -