⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 gf2n.cpp

📁 lots Elliptic curve cryptography codes. Use Visual c++ to compile
💻 CPP
📖 第 1 页 / 共 2 页
字号:
// gf2n.cpp - written and placed in the public domain by Wei Dai#include "pch.h"#ifndef CRYPTOPP_IMPORTS#include "gf2n.h"#include "algebra.h"#include "words.h"#include "randpool.h"#include "asn.h"#include "oids.h"#include <iostream>NAMESPACE_BEGIN(CryptoPP)PolynomialMod2::PolynomialMod2(){}PolynomialMod2::PolynomialMod2(word value, size_t bitLength)	: reg(BitsToWords(bitLength)){	assert(value==0 || reg.size()>0);	if (reg.size() > 0)	{		reg[0] = value;		SetWords(reg+1, 0, reg.size()-1);	}}PolynomialMod2::PolynomialMod2(const PolynomialMod2& t)	: reg(t.reg.size()){	CopyWords(reg, t.reg, reg.size());}void PolynomialMod2::Randomize(RandomNumberGenerator &rng, size_t nbits){	const size_t nbytes = nbits/8 + 1;	SecByteBlock buf(nbytes);	rng.GenerateBlock(buf, nbytes);	buf[0] = (byte)Crop(buf[0], nbits % 8);	Decode(buf, nbytes);}PolynomialMod2 PolynomialMod2::AllOnes(size_t bitLength){	PolynomialMod2 result((word)0, bitLength);	SetWords(result.reg, ~(word)0, result.reg.size());	if (bitLength%WORD_BITS)		result.reg[result.reg.size()-1] = (word)Crop(result.reg[result.reg.size()-1], bitLength%WORD_BITS);	return result;}void PolynomialMod2::SetBit(size_t n, int value){	if (value)	{		reg.CleanGrow(n/WORD_BITS + 1);		reg[n/WORD_BITS] |= (word(1) << (n%WORD_BITS));	}	else	{		if (n/WORD_BITS < reg.size())			reg[n/WORD_BITS] &= ~(word(1) << (n%WORD_BITS));	}}byte PolynomialMod2::GetByte(size_t n) const{	if (n/WORD_SIZE >= reg.size())		return 0;	else		return byte(reg[n/WORD_SIZE] >> ((n%WORD_SIZE)*8));}void PolynomialMod2::SetByte(size_t n, byte value){	reg.CleanGrow(BytesToWords(n+1));	reg[n/WORD_SIZE] &= ~(word(0xff) << 8*(n%WORD_SIZE));	reg[n/WORD_SIZE] |= (word(value) << 8*(n%WORD_SIZE));}PolynomialMod2 PolynomialMod2::Monomial(size_t i) {	PolynomialMod2 r((word)0, i+1); 	r.SetBit(i); 	return r;}PolynomialMod2 PolynomialMod2::Trinomial(size_t t0, size_t t1, size_t t2) {	PolynomialMod2 r((word)0, t0+1);	r.SetBit(t0);	r.SetBit(t1);	r.SetBit(t2);	return r;}PolynomialMod2 PolynomialMod2::Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4){	PolynomialMod2 r((word)0, t0+1);	r.SetBit(t0);	r.SetBit(t1);	r.SetBit(t2);	r.SetBit(t3);	r.SetBit(t4);	return r;}template <word i>struct NewPolynomialMod2{	PolynomialMod2 * operator()() const	{		return new PolynomialMod2(i);	}};const PolynomialMod2 &PolynomialMod2::Zero(){	return Singleton<PolynomialMod2>().Ref();}const PolynomialMod2 &PolynomialMod2::One(){	return Singleton<PolynomialMod2, NewPolynomialMod2<1> >().Ref();}void PolynomialMod2::Decode(const byte *input, size_t inputLen){	StringStore store(input, inputLen);	Decode(store, inputLen);}void PolynomialMod2::Encode(byte *output, size_t outputLen) const{	ArraySink sink(output, outputLen);	Encode(sink, outputLen);}void PolynomialMod2::Decode(BufferedTransformation &bt, size_t inputLen){	reg.CleanNew(BytesToWords(inputLen));	for (size_t i=inputLen; i > 0; i--)	{		byte b;		bt.Get(b);		reg[(i-1)/WORD_SIZE] |= word(b) << ((i-1)%WORD_SIZE)*8;	}}void PolynomialMod2::Encode(BufferedTransformation &bt, size_t outputLen) const{	for (size_t i=outputLen; i > 0; i--)		bt.Put(GetByte(i-1));}void PolynomialMod2::DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const{	DERGeneralEncoder enc(bt, OCTET_STRING);	Encode(enc, length);	enc.MessageEnd();}void PolynomialMod2::BERDecodeAsOctetString(BufferedTransformation &bt, size_t length){	BERGeneralDecoder dec(bt, OCTET_STRING);	if (!dec.IsDefiniteLength() || dec.RemainingLength() != length)		BERDecodeError();	Decode(dec, length);	dec.MessageEnd();}unsigned int PolynomialMod2::WordCount() const{	return (unsigned int)CountWords(reg, reg.size());}unsigned int PolynomialMod2::ByteCount() const{	unsigned wordCount = WordCount();	if (wordCount)		return (wordCount-1)*WORD_SIZE + BytePrecision(reg[wordCount-1]);	else		return 0;}unsigned int PolynomialMod2::BitCount() const{	unsigned wordCount = WordCount();	if (wordCount)		return (wordCount-1)*WORD_BITS + BitPrecision(reg[wordCount-1]);	else		return 0;}unsigned int PolynomialMod2::Parity() const{	unsigned i;	word temp=0;	for (i=0; i<reg.size(); i++)		temp ^= reg[i];	return CryptoPP::Parity(temp);}PolynomialMod2& PolynomialMod2::operator=(const PolynomialMod2& t){	reg.Assign(t.reg);	return *this;}PolynomialMod2& PolynomialMod2::operator^=(const PolynomialMod2& t){	reg.CleanGrow(t.reg.size());	XorWords(reg, t.reg, t.reg.size());	return *this;}PolynomialMod2 PolynomialMod2::Xor(const PolynomialMod2 &b) const{	if (b.reg.size() >= reg.size())	{		PolynomialMod2 result((word)0, b.reg.size()*WORD_BITS);		XorWords(result.reg, reg, b.reg, reg.size());		CopyWords(result.reg+reg.size(), b.reg+reg.size(), b.reg.size()-reg.size());		return result;	}	else	{		PolynomialMod2 result((word)0, reg.size()*WORD_BITS);		XorWords(result.reg, reg, b.reg, b.reg.size());		CopyWords(result.reg+b.reg.size(), reg+b.reg.size(), reg.size()-b.reg.size());		return result;	}}PolynomialMod2 PolynomialMod2::And(const PolynomialMod2 &b) const{	PolynomialMod2 result((word)0, WORD_BITS*STDMIN(reg.size(), b.reg.size()));	AndWords(result.reg, reg, b.reg, result.reg.size());	return result;}PolynomialMod2 PolynomialMod2::Times(const PolynomialMod2 &b) const{	PolynomialMod2 result((word)0, BitCount() + b.BitCount());	for (int i=b.Degree(); i>=0; i--)	{		result <<= 1;		if (b[i])			XorWords(result.reg, reg, reg.size());	}	return result;}PolynomialMod2 PolynomialMod2::Squared() const{	static const word map[16] = {0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85};	PolynomialMod2 result((word)0, 2*reg.size()*WORD_BITS);	for (unsigned i=0; i<reg.size(); i++)	{		unsigned j;		for (j=0; j<WORD_BITS; j+=8)			result.reg[2*i] |= map[(reg[i] >> (j/2)) % 16] << j;		for (j=0; j<WORD_BITS; j+=8)			result.reg[2*i+1] |= map[(reg[i] >> (j/2 + WORD_BITS/2)) % 16] << j;	}	return result;}void PolynomialMod2::Divide(PolynomialMod2 &remainder, PolynomialMod2 &quotient,				   const PolynomialMod2 &dividend, const PolynomialMod2 &divisor){	if (!divisor)		throw PolynomialMod2::DivideByZero();	int degree = divisor.Degree();	remainder.reg.CleanNew(BitsToWords(degree+1));	if (dividend.BitCount() >= divisor.BitCount())		quotient.reg.CleanNew(BitsToWords(dividend.BitCount() - divisor.BitCount() + 1));	else		quotient.reg.CleanNew(0);	for (int i=dividend.Degree(); i>=0; i--)	{		remainder <<= 1;		remainder.reg[0] |= dividend[i];		if (remainder[degree])		{			remainder -= divisor;			quotient.SetBit(i);		}	}}PolynomialMod2 PolynomialMod2::DividedBy(const PolynomialMod2 &b) const{	PolynomialMod2 remainder, quotient;	PolynomialMod2::Divide(remainder, quotient, *this, b);	return quotient;}PolynomialMod2 PolynomialMod2::Modulo(const PolynomialMod2 &b) const{	PolynomialMod2 remainder, quotient;	PolynomialMod2::Divide(remainder, quotient, *this, b);	return remainder;}PolynomialMod2& PolynomialMod2::operator<<=(unsigned int n){	if (!reg.size())		return *this;	int i;	word u;	word carry=0;	word *r=reg;	if (n==1)	// special case code for most frequent case	{		i = (int)reg.size();		while (i--)		{			u = *r;			*r = (u << 1) | carry;			carry = u >> (WORD_BITS-1);			r++;		}		if (carry)		{			reg.Grow(reg.size()+1);			reg[reg.size()-1] = carry;		}		return *this;	}	int shiftWords = n / WORD_BITS;	int shiftBits = n % WORD_BITS;	if (shiftBits)	{		i = (int)reg.size();		while (i--)		{			u = *r;			*r = (u << shiftBits) | carry;			carry = u >> (WORD_BITS-shiftBits);			r++;		}	}	if (carry)	{		reg.Grow(reg.size()+shiftWords+1);		reg[reg.size()-1] = carry;	}	else		reg.Grow(reg.size()+shiftWords);	if (shiftWords)	{		for (i = (int)reg.size()-1; i>=shiftWords; i--)			reg[i] = reg[i-shiftWords];		for (; i>=0; i--)			reg[i] = 0;	}	return *this;}PolynomialMod2& PolynomialMod2::operator>>=(unsigned int n){	if (!reg.size())		return *this;	int shiftWords = n / WORD_BITS;	int shiftBits = n % WORD_BITS;	size_t i;	word u;	word carry=0;	word *r=reg+reg.size()-1;	if (shiftBits)	{		i = reg.size();		while (i--)		{			u = *r;			*r = (u >> shiftBits) | carry;			carry = u << (WORD_BITS-shiftBits);			r--;		}	}	if (shiftWords)	{		for (i=0; i<reg.size()-shiftWords; i++)			reg[i] = reg[i+shiftWords];		for (; i<reg.size(); i++)			reg[i] = 0;	}	return *this;}PolynomialMod2 PolynomialMod2::operator<<(unsigned int n) const{	PolynomialMod2 result(*this);	return result<<=n;}PolynomialMod2 PolynomialMod2::operator>>(unsigned int n) const{	PolynomialMod2 result(*this);	return result>>=n;}bool PolynomialMod2::operator!() const{	for (unsigned i=0; i<reg.size(); i++)		if (reg[i]) return false;	return true;}bool PolynomialMod2::Equals(const PolynomialMod2 &rhs) const

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -