📄 gf2n.cpp
字号:
// gf2n.cpp - written and placed in the public domain by Wei Dai#include "pch.h"#ifndef CRYPTOPP_IMPORTS#include "gf2n.h"#include "algebra.h"#include "words.h"#include "randpool.h"#include "asn.h"#include "oids.h"#include <iostream>NAMESPACE_BEGIN(CryptoPP)PolynomialMod2::PolynomialMod2(){}PolynomialMod2::PolynomialMod2(word value, size_t bitLength) : reg(BitsToWords(bitLength)){ assert(value==0 || reg.size()>0); if (reg.size() > 0) { reg[0] = value; SetWords(reg+1, 0, reg.size()-1); }}PolynomialMod2::PolynomialMod2(const PolynomialMod2& t) : reg(t.reg.size()){ CopyWords(reg, t.reg, reg.size());}void PolynomialMod2::Randomize(RandomNumberGenerator &rng, size_t nbits){ const size_t nbytes = nbits/8 + 1; SecByteBlock buf(nbytes); rng.GenerateBlock(buf, nbytes); buf[0] = (byte)Crop(buf[0], nbits % 8); Decode(buf, nbytes);}PolynomialMod2 PolynomialMod2::AllOnes(size_t bitLength){ PolynomialMod2 result((word)0, bitLength); SetWords(result.reg, ~(word)0, result.reg.size()); if (bitLength%WORD_BITS) result.reg[result.reg.size()-1] = (word)Crop(result.reg[result.reg.size()-1], bitLength%WORD_BITS); return result;}void PolynomialMod2::SetBit(size_t n, int value){ if (value) { reg.CleanGrow(n/WORD_BITS + 1); reg[n/WORD_BITS] |= (word(1) << (n%WORD_BITS)); } else { if (n/WORD_BITS < reg.size()) reg[n/WORD_BITS] &= ~(word(1) << (n%WORD_BITS)); }}byte PolynomialMod2::GetByte(size_t n) const{ if (n/WORD_SIZE >= reg.size()) return 0; else return byte(reg[n/WORD_SIZE] >> ((n%WORD_SIZE)*8));}void PolynomialMod2::SetByte(size_t n, byte value){ reg.CleanGrow(BytesToWords(n+1)); reg[n/WORD_SIZE] &= ~(word(0xff) << 8*(n%WORD_SIZE)); reg[n/WORD_SIZE] |= (word(value) << 8*(n%WORD_SIZE));}PolynomialMod2 PolynomialMod2::Monomial(size_t i) { PolynomialMod2 r((word)0, i+1); r.SetBit(i); return r;}PolynomialMod2 PolynomialMod2::Trinomial(size_t t0, size_t t1, size_t t2) { PolynomialMod2 r((word)0, t0+1); r.SetBit(t0); r.SetBit(t1); r.SetBit(t2); return r;}PolynomialMod2 PolynomialMod2::Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4){ PolynomialMod2 r((word)0, t0+1); r.SetBit(t0); r.SetBit(t1); r.SetBit(t2); r.SetBit(t3); r.SetBit(t4); return r;}template <word i>struct NewPolynomialMod2{ PolynomialMod2 * operator()() const { return new PolynomialMod2(i); }};const PolynomialMod2 &PolynomialMod2::Zero(){ return Singleton<PolynomialMod2>().Ref();}const PolynomialMod2 &PolynomialMod2::One(){ return Singleton<PolynomialMod2, NewPolynomialMod2<1> >().Ref();}void PolynomialMod2::Decode(const byte *input, size_t inputLen){ StringStore store(input, inputLen); Decode(store, inputLen);}void PolynomialMod2::Encode(byte *output, size_t outputLen) const{ ArraySink sink(output, outputLen); Encode(sink, outputLen);}void PolynomialMod2::Decode(BufferedTransformation &bt, size_t inputLen){ reg.CleanNew(BytesToWords(inputLen)); for (size_t i=inputLen; i > 0; i--) { byte b; bt.Get(b); reg[(i-1)/WORD_SIZE] |= word(b) << ((i-1)%WORD_SIZE)*8; }}void PolynomialMod2::Encode(BufferedTransformation &bt, size_t outputLen) const{ for (size_t i=outputLen; i > 0; i--) bt.Put(GetByte(i-1));}void PolynomialMod2::DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const{ DERGeneralEncoder enc(bt, OCTET_STRING); Encode(enc, length); enc.MessageEnd();}void PolynomialMod2::BERDecodeAsOctetString(BufferedTransformation &bt, size_t length){ BERGeneralDecoder dec(bt, OCTET_STRING); if (!dec.IsDefiniteLength() || dec.RemainingLength() != length) BERDecodeError(); Decode(dec, length); dec.MessageEnd();}unsigned int PolynomialMod2::WordCount() const{ return (unsigned int)CountWords(reg, reg.size());}unsigned int PolynomialMod2::ByteCount() const{ unsigned wordCount = WordCount(); if (wordCount) return (wordCount-1)*WORD_SIZE + BytePrecision(reg[wordCount-1]); else return 0;}unsigned int PolynomialMod2::BitCount() const{ unsigned wordCount = WordCount(); if (wordCount) return (wordCount-1)*WORD_BITS + BitPrecision(reg[wordCount-1]); else return 0;}unsigned int PolynomialMod2::Parity() const{ unsigned i; word temp=0; for (i=0; i<reg.size(); i++) temp ^= reg[i]; return CryptoPP::Parity(temp);}PolynomialMod2& PolynomialMod2::operator=(const PolynomialMod2& t){ reg.Assign(t.reg); return *this;}PolynomialMod2& PolynomialMod2::operator^=(const PolynomialMod2& t){ reg.CleanGrow(t.reg.size()); XorWords(reg, t.reg, t.reg.size()); return *this;}PolynomialMod2 PolynomialMod2::Xor(const PolynomialMod2 &b) const{ if (b.reg.size() >= reg.size()) { PolynomialMod2 result((word)0, b.reg.size()*WORD_BITS); XorWords(result.reg, reg, b.reg, reg.size()); CopyWords(result.reg+reg.size(), b.reg+reg.size(), b.reg.size()-reg.size()); return result; } else { PolynomialMod2 result((word)0, reg.size()*WORD_BITS); XorWords(result.reg, reg, b.reg, b.reg.size()); CopyWords(result.reg+b.reg.size(), reg+b.reg.size(), reg.size()-b.reg.size()); return result; }}PolynomialMod2 PolynomialMod2::And(const PolynomialMod2 &b) const{ PolynomialMod2 result((word)0, WORD_BITS*STDMIN(reg.size(), b.reg.size())); AndWords(result.reg, reg, b.reg, result.reg.size()); return result;}PolynomialMod2 PolynomialMod2::Times(const PolynomialMod2 &b) const{ PolynomialMod2 result((word)0, BitCount() + b.BitCount()); for (int i=b.Degree(); i>=0; i--) { result <<= 1; if (b[i]) XorWords(result.reg, reg, reg.size()); } return result;}PolynomialMod2 PolynomialMod2::Squared() const{ static const word map[16] = {0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85}; PolynomialMod2 result((word)0, 2*reg.size()*WORD_BITS); for (unsigned i=0; i<reg.size(); i++) { unsigned j; for (j=0; j<WORD_BITS; j+=8) result.reg[2*i] |= map[(reg[i] >> (j/2)) % 16] << j; for (j=0; j<WORD_BITS; j+=8) result.reg[2*i+1] |= map[(reg[i] >> (j/2 + WORD_BITS/2)) % 16] << j; } return result;}void PolynomialMod2::Divide(PolynomialMod2 &remainder, PolynomialMod2 "ient, const PolynomialMod2 ÷nd, const PolynomialMod2 &divisor){ if (!divisor) throw PolynomialMod2::DivideByZero(); int degree = divisor.Degree(); remainder.reg.CleanNew(BitsToWords(degree+1)); if (dividend.BitCount() >= divisor.BitCount()) quotient.reg.CleanNew(BitsToWords(dividend.BitCount() - divisor.BitCount() + 1)); else quotient.reg.CleanNew(0); for (int i=dividend.Degree(); i>=0; i--) { remainder <<= 1; remainder.reg[0] |= dividend[i]; if (remainder[degree]) { remainder -= divisor; quotient.SetBit(i); } }}PolynomialMod2 PolynomialMod2::DividedBy(const PolynomialMod2 &b) const{ PolynomialMod2 remainder, quotient; PolynomialMod2::Divide(remainder, quotient, *this, b); return quotient;}PolynomialMod2 PolynomialMod2::Modulo(const PolynomialMod2 &b) const{ PolynomialMod2 remainder, quotient; PolynomialMod2::Divide(remainder, quotient, *this, b); return remainder;}PolynomialMod2& PolynomialMod2::operator<<=(unsigned int n){ if (!reg.size()) return *this; int i; word u; word carry=0; word *r=reg; if (n==1) // special case code for most frequent case { i = (int)reg.size(); while (i--) { u = *r; *r = (u << 1) | carry; carry = u >> (WORD_BITS-1); r++; } if (carry) { reg.Grow(reg.size()+1); reg[reg.size()-1] = carry; } return *this; } int shiftWords = n / WORD_BITS; int shiftBits = n % WORD_BITS; if (shiftBits) { i = (int)reg.size(); while (i--) { u = *r; *r = (u << shiftBits) | carry; carry = u >> (WORD_BITS-shiftBits); r++; } } if (carry) { reg.Grow(reg.size()+shiftWords+1); reg[reg.size()-1] = carry; } else reg.Grow(reg.size()+shiftWords); if (shiftWords) { for (i = (int)reg.size()-1; i>=shiftWords; i--) reg[i] = reg[i-shiftWords]; for (; i>=0; i--) reg[i] = 0; } return *this;}PolynomialMod2& PolynomialMod2::operator>>=(unsigned int n){ if (!reg.size()) return *this; int shiftWords = n / WORD_BITS; int shiftBits = n % WORD_BITS; size_t i; word u; word carry=0; word *r=reg+reg.size()-1; if (shiftBits) { i = reg.size(); while (i--) { u = *r; *r = (u >> shiftBits) | carry; carry = u << (WORD_BITS-shiftBits); r--; } } if (shiftWords) { for (i=0; i<reg.size()-shiftWords; i++) reg[i] = reg[i+shiftWords]; for (; i<reg.size(); i++) reg[i] = 0; } return *this;}PolynomialMod2 PolynomialMod2::operator<<(unsigned int n) const{ PolynomialMod2 result(*this); return result<<=n;}PolynomialMod2 PolynomialMod2::operator>>(unsigned int n) const{ PolynomialMod2 result(*this); return result>>=n;}bool PolynomialMod2::operator!() const{ for (unsigned i=0; i<reg.size(); i++) if (reg[i]) return false; return true;}bool PolynomialMod2::Equals(const PolynomialMod2 &rhs) const
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -