⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 xtr.cpp

📁 lots Elliptic curve cryptography codes. Use Visual c++ to compile
💻 CPP
字号:
// cryptlib.cpp - written and placed in the public domain by Wei Dai#include "pch.h"#include "xtr.h"#include "nbtheory.h"#include "algebra.cpp"NAMESPACE_BEGIN(CryptoPP)const GFP2Element & GFP2Element::Zero(){	return Singleton<GFP2Element>().Ref();}void XTR_FindPrimesAndGenerator(RandomNumberGenerator &rng, Integer &p, Integer &q, GFP2Element &g, unsigned int pbits, unsigned int qbits){	assert(qbits > 9);	// no primes exist for pbits = 10, qbits = 9	assert(pbits > qbits);	const Integer minQ = Integer::Power2(qbits - 1);	const Integer maxQ = Integer::Power2(qbits) - 1;	const Integer minP = Integer::Power2(pbits - 1);	const Integer maxP = Integer::Power2(pbits) - 1;	Integer r1, r2;	do	{		bool qFound = q.Randomize(rng, minQ, maxQ, Integer::PRIME, 7, 12);		assert(qFound);		bool solutionsExist = SolveModularQuadraticEquation(r1, r2, 1, -1, 1, q);		assert(solutionsExist);	} while (!p.Randomize(rng, minP, maxP, Integer::PRIME, CRT(rng.GenerateBit()?r1:r2, q, 2, 3, EuclideanMultiplicativeInverse(p, 3)), 3*q));	assert(((p.Squared() - p + 1) % q).IsZero());	GFP2_ONB<ModularArithmetic> gfp2(p);	GFP2Element three = gfp2.ConvertIn(3), t;	while (true)	{		g.c1.Randomize(rng, Integer::Zero(), p-1);		g.c2.Randomize(rng, Integer::Zero(), p-1);		t = XTR_Exponentiate(g, p+1, p);		if (t.c1 == t.c2)			continue;		g = XTR_Exponentiate(g, (p.Squared()-p+1)/q, p);		if (g != three)			break;	}	assert(XTR_Exponentiate(g, q, p) == three);}GFP2Element XTR_Exponentiate(const GFP2Element &b, const Integer &e, const Integer &p){	unsigned int bitCount = e.BitCount();	if (bitCount == 0)		return GFP2Element(-3, -3);	// find the lowest bit of e that is 1	unsigned int lowest1bit;	for (lowest1bit=0; e.GetBit(lowest1bit) == 0; lowest1bit++) {}	GFP2_ONB<MontgomeryRepresentation> gfp2(p);	GFP2Element c = gfp2.ConvertIn(b);	GFP2Element cp = gfp2.PthPower(c);	GFP2Element S[5] = {gfp2.ConvertIn(3), c, gfp2.SpecialOperation1(c)};	// do all exponents bits except the lowest zeros starting from the top	unsigned int i;	for (i = e.BitCount() - 1; i>lowest1bit; i--)	{		if (e.GetBit(i))		{			gfp2.RaiseToPthPower(S[0]);			gfp2.Accumulate(S[0], gfp2.SpecialOperation2(S[2], c, S[1]));			S[1] = gfp2.SpecialOperation1(S[1]);			S[2] = gfp2.SpecialOperation1(S[2]);			S[0].swap(S[1]);		}		else		{			gfp2.RaiseToPthPower(S[2]);			gfp2.Accumulate(S[2], gfp2.SpecialOperation2(S[0], cp, S[1]));			S[1] = gfp2.SpecialOperation1(S[1]);			S[0] = gfp2.SpecialOperation1(S[0]);			S[2].swap(S[1]);		}	}	// now do the lowest zeros	while (i--)		S[1] = gfp2.SpecialOperation1(S[1]);	return gfp2.ConvertOut(S[1]);}template class AbstractRing<GFP2Element>;template class AbstractGroup<GFP2Element>;NAMESPACE_END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -