⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ecp.cpp

📁 lots Elliptic curve cryptography codes. Use Visual c++ to compile
💻 CPP
字号:
// ecp.cpp - written and placed in the public domain by Wei Dai#include "pch.h"#ifndef CRYPTOPP_IMPORTS#include "ecp.h"#include "asn.h"#include "nbtheory.h"#include "algebra.cpp"NAMESPACE_BEGIN(CryptoPP)ANONYMOUS_NAMESPACE_BEGINstatic inline ECP::Point ToMontgomery(const ModularArithmetic &mr, const ECP::Point &P){	return P.identity ? P : ECP::Point(mr.ConvertIn(P.x), mr.ConvertIn(P.y));}static inline ECP::Point FromMontgomery(const ModularArithmetic &mr, const ECP::Point &P){	return P.identity ? P : ECP::Point(mr.ConvertOut(P.x), mr.ConvertOut(P.y));}NAMESPACE_ENDECP::ECP(const ECP &ecp, bool convertToMontgomeryRepresentation){	if (convertToMontgomeryRepresentation && !ecp.GetField().IsMontgomeryRepresentation())	{		m_fieldPtr.reset(new MontgomeryRepresentation(ecp.GetField().GetModulus()));		m_a = GetField().ConvertIn(ecp.m_a);		m_b = GetField().ConvertIn(ecp.m_b);	}	else		operator=(ecp);}ECP::ECP(BufferedTransformation &bt)	: m_fieldPtr(new Field(bt)){	BERSequenceDecoder seq(bt);	GetField().BERDecodeElement(seq, m_a);	GetField().BERDecodeElement(seq, m_b);	// skip optional seed	if (!seq.EndReached())	{		SecByteBlock seed;		unsigned int unused;		BERDecodeBitString(seq, seed, unused);	}	seq.MessageEnd();}void ECP::DEREncode(BufferedTransformation &bt) const{	GetField().DEREncode(bt);	DERSequenceEncoder seq(bt);	GetField().DEREncodeElement(seq, m_a);	GetField().DEREncodeElement(seq, m_b);	seq.MessageEnd();}bool ECP::DecodePoint(ECP::Point &P, const byte *encodedPoint, size_t encodedPointLen) const{	StringStore store(encodedPoint, encodedPointLen);	return DecodePoint(P, store, encodedPointLen);}bool ECP::DecodePoint(ECP::Point &P, BufferedTransformation &bt, size_t encodedPointLen) const{	byte type;	if (encodedPointLen < 1 || !bt.Get(type))		return false;	switch (type)	{	case 0:		P.identity = true;		return true;	case 2:	case 3:	{		if (encodedPointLen != EncodedPointSize(true))			return false;		Integer p = FieldSize();		P.identity = false;		P.x.Decode(bt, GetField().MaxElementByteLength()); 		P.y = ((P.x*P.x+m_a)*P.x+m_b) % p;		if (Jacobi(P.y, p) !=1)			return false;		P.y = ModularSquareRoot(P.y, p);		if ((type & 1) != P.y.GetBit(0))			P.y = p-P.y;		return true;	}	case 4:	{		if (encodedPointLen != EncodedPointSize(false))			return false;		unsigned int len = GetField().MaxElementByteLength();		P.identity = false;		P.x.Decode(bt, len);		P.y.Decode(bt, len);		return true;	}	default:		return false;	}}void ECP::EncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const{	if (P.identity)		NullStore().TransferTo(bt, EncodedPointSize(compressed));	else if (compressed)	{		bt.Put(2 + P.y.GetBit(0));		P.x.Encode(bt, GetField().MaxElementByteLength());	}	else	{		unsigned int len = GetField().MaxElementByteLength();		bt.Put(4);	// uncompressed		P.x.Encode(bt, len);		P.y.Encode(bt, len);	}}void ECP::EncodePoint(byte *encodedPoint, const Point &P, bool compressed) const{	ArraySink sink(encodedPoint, EncodedPointSize(compressed));	EncodePoint(sink, P, compressed);	assert(sink.TotalPutLength() == EncodedPointSize(compressed));}ECP::Point ECP::BERDecodePoint(BufferedTransformation &bt) const{	SecByteBlock str;	BERDecodeOctetString(bt, str);	Point P;	if (!DecodePoint(P, str, str.size()))		BERDecodeError();	return P;}void ECP::DEREncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const{	SecByteBlock str(EncodedPointSize(compressed));	EncodePoint(str, P, compressed);	DEREncodeOctetString(bt, str);}bool ECP::ValidateParameters(RandomNumberGenerator &rng, unsigned int level) const{	Integer p = FieldSize();	bool pass = p.IsOdd();	pass = pass && !m_a.IsNegative() && m_a<p && !m_b.IsNegative() && m_b<p;	if (level >= 1)		pass = pass && ((4*m_a*m_a*m_a+27*m_b*m_b)%p).IsPositive();	if (level >= 2)		pass = pass && VerifyPrime(rng, p);	return pass;}bool ECP::VerifyPoint(const Point &P) const{	const FieldElement &x = P.x, &y = P.y;	Integer p = FieldSize();	return P.identity ||		(!x.IsNegative() && x<p && !y.IsNegative() && y<p		&& !(((x*x+m_a)*x+m_b-y*y)%p));}bool ECP::Equal(const Point &P, const Point &Q) const{	if (P.identity && Q.identity)		return true;	if (P.identity && !Q.identity)		return false;	if (!P.identity && Q.identity)		return false;	return (GetField().Equal(P.x,Q.x) && GetField().Equal(P.y,Q.y));}const ECP::Point& ECP::Identity() const{	return Singleton<Point>().Ref();}const ECP::Point& ECP::Inverse(const Point &P) const{	if (P.identity)		return P;	else	{		m_R.identity = false;		m_R.x = P.x;		m_R.y = GetField().Inverse(P.y);		return m_R;	}}const ECP::Point& ECP::Add(const Point &P, const Point &Q) const{	if (P.identity) return Q;	if (Q.identity) return P;	if (GetField().Equal(P.x, Q.x))		return GetField().Equal(P.y, Q.y) ? Double(P) : Identity();	FieldElement t = GetField().Subtract(Q.y, P.y);	t = GetField().Divide(t, GetField().Subtract(Q.x, P.x));	FieldElement x = GetField().Subtract(GetField().Subtract(GetField().Square(t), P.x), Q.x);	m_R.y = GetField().Subtract(GetField().Multiply(t, GetField().Subtract(P.x, x)), P.y);	m_R.x.swap(x);	m_R.identity = false;	return m_R;}const ECP::Point& ECP::Double(const Point &P) const{	if (P.identity || P.y==GetField().Identity()) return Identity();	FieldElement t = GetField().Square(P.x);	t = GetField().Add(GetField().Add(GetField().Double(t), t), m_a);	t = GetField().Divide(t, GetField().Double(P.y));	FieldElement x = GetField().Subtract(GetField().Subtract(GetField().Square(t), P.x), P.x);	m_R.y = GetField().Subtract(GetField().Multiply(t, GetField().Subtract(P.x, x)), P.y);	m_R.x.swap(x);	m_R.identity = false;	return m_R;}template <class T, class Iterator> void ParallelInvert(const AbstractRing<T> &ring, Iterator begin, Iterator end){	size_t n = end-begin;	if (n == 1)		*begin = ring.MultiplicativeInverse(*begin);	else if (n > 1)	{		std::vector<T> vec((n+1)/2);		unsigned int i;		Iterator it;		for (i=0, it=begin; i<n/2; i++, it+=2)			vec[i] = ring.Multiply(*it, *(it+1));		if (n%2 == 1)			vec[n/2] = *it;		ParallelInvert(ring, vec.begin(), vec.end());		for (i=0, it=begin; i<n/2; i++, it+=2)		{			if (!vec[i])			{				*it = ring.MultiplicativeInverse(*it);				*(it+1) = ring.MultiplicativeInverse(*(it+1));			}			else			{				std::swap(*it, *(it+1));				*it = ring.Multiply(*it, vec[i]);				*(it+1) = ring.Multiply(*(it+1), vec[i]);			}		}		if (n%2 == 1)			*it = vec[n/2];	}}struct ProjectivePoint{	ProjectivePoint() {}	ProjectivePoint(const Integer &x, const Integer &y, const Integer &z)		: x(x), y(y), z(z)	{}	Integer x,y,z;};class ProjectiveDoubling{public:	ProjectiveDoubling(const ModularArithmetic &mr, const Integer &m_a, const Integer &m_b, const ECPPoint &Q)		: mr(mr), firstDoubling(true), negated(false)	{		if (Q.identity)		{			sixteenY4 = P.x = P.y = mr.MultiplicativeIdentity();			aZ4 = P.z = mr.Identity();		}		else		{			P.x = Q.x;			P.y = Q.y;			sixteenY4 = P.z = mr.MultiplicativeIdentity();			aZ4 = m_a;		}	}	void Double()	{		twoY = mr.Double(P.y);		P.z = mr.Multiply(P.z, twoY);		fourY2 = mr.Square(twoY);		S = mr.Multiply(fourY2, P.x);		aZ4 = mr.Multiply(aZ4, sixteenY4);		M = mr.Square(P.x);		M = mr.Add(mr.Add(mr.Double(M), M), aZ4);		P.x = mr.Square(M);		mr.Reduce(P.x, S);		mr.Reduce(P.x, S);		mr.Reduce(S, P.x);		P.y = mr.Multiply(M, S);		sixteenY4 = mr.Square(fourY2);		mr.Reduce(P.y, mr.Half(sixteenY4));	}	const ModularArithmetic &mr;	ProjectivePoint P;	bool firstDoubling, negated;	Integer sixteenY4, aZ4, twoY, fourY2, S, M;};struct ZIterator{	ZIterator() {}	ZIterator(std::vector<ProjectivePoint>::iterator it) : it(it) {}	Integer& operator*() {return it->z;}	int operator-(ZIterator it2) {return int(it-it2.it);}	ZIterator operator+(int i) {return ZIterator(it+i);}	ZIterator& operator+=(int i) {it+=i; return *this;}	std::vector<ProjectivePoint>::iterator it;};ECP::Point ECP::ScalarMultiply(const Point &P, const Integer &k) const{	Element result;	if (k.BitCount() <= 5)		AbstractGroup<ECPPoint>::SimultaneousMultiply(&result, P, &k, 1);	else		ECP::SimultaneousMultiply(&result, P, &k, 1);	return result;}void ECP::SimultaneousMultiply(ECP::Point *results, const ECP::Point &P, const Integer *expBegin, unsigned int expCount) const{	if (!GetField().IsMontgomeryRepresentation())	{		ECP ecpmr(*this, true);		const ModularArithmetic &mr = ecpmr.GetField();		ecpmr.SimultaneousMultiply(results, ToMontgomery(mr, P), expBegin, expCount);		for (unsigned int i=0; i<expCount; i++)			results[i] = FromMontgomery(mr, results[i]);		return;	}	ProjectiveDoubling rd(GetField(), m_a, m_b, P);	std::vector<ProjectivePoint> bases;	std::vector<WindowSlider> exponents;	exponents.reserve(expCount);	std::vector<std::vector<word32> > baseIndices(expCount);	std::vector<std::vector<bool> > negateBase(expCount);	std::vector<std::vector<word32> > exponentWindows(expCount);	unsigned int i;	for (i=0; i<expCount; i++)	{		assert(expBegin->NotNegative());		exponents.push_back(WindowSlider(*expBegin++, InversionIsFast(), 5));		exponents[i].FindNextWindow();	}	unsigned int expBitPosition = 0;	bool notDone = true;	while (notDone)	{		notDone = false;		bool baseAdded = false;		for (i=0; i<expCount; i++)		{			if (!exponents[i].finished && expBitPosition == exponents[i].windowBegin)			{				if (!baseAdded)				{					bases.push_back(rd.P);					baseAdded =true;				}				exponentWindows[i].push_back(exponents[i].expWindow);				baseIndices[i].push_back((word32)bases.size()-1);				negateBase[i].push_back(exponents[i].negateNext);				exponents[i].FindNextWindow();			}			notDone = notDone || !exponents[i].finished;		}		if (notDone)		{			rd.Double();			expBitPosition++;		}	}	// convert from projective to affine coordinates	ParallelInvert(GetField(), ZIterator(bases.begin()), ZIterator(bases.end()));	for (i=0; i<bases.size(); i++)	{		if (bases[i].z.NotZero())		{			bases[i].y = GetField().Multiply(bases[i].y, bases[i].z);			bases[i].z = GetField().Square(bases[i].z);			bases[i].x = GetField().Multiply(bases[i].x, bases[i].z);			bases[i].y = GetField().Multiply(bases[i].y, bases[i].z);		}	}	std::vector<BaseAndExponent<Point, Integer> > finalCascade;	for (i=0; i<expCount; i++)	{		finalCascade.resize(baseIndices[i].size());		for (unsigned int j=0; j<baseIndices[i].size(); j++)		{			ProjectivePoint &base = bases[baseIndices[i][j]];			if (base.z.IsZero())				finalCascade[j].base.identity = true;			else			{				finalCascade[j].base.identity = false;				finalCascade[j].base.x = base.x;				if (negateBase[i][j])					finalCascade[j].base.y = GetField().Inverse(base.y);				else					finalCascade[j].base.y = base.y;			}			finalCascade[j].exponent = Integer(Integer::POSITIVE, 0, exponentWindows[i][j]);		}		results[i] = GeneralCascadeMultiplication(*this, finalCascade.begin(), finalCascade.end());	}}ECP::Point ECP::CascadeScalarMultiply(const Point &P, const Integer &k1, const Point &Q, const Integer &k2) const{	if (!GetField().IsMontgomeryRepresentation())	{		ECP ecpmr(*this, true);		const ModularArithmetic &mr = ecpmr.GetField();		return FromMontgomery(mr, ecpmr.CascadeScalarMultiply(ToMontgomery(mr, P), k1, ToMontgomery(mr, Q), k2));	}	else		return AbstractGroup<Point>::CascadeScalarMultiply(P, k1, Q, k2);}NAMESPACE_END#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -