⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rsa.cpp

📁 lots Elliptic curve cryptography codes. Use Visual c++ to compile
💻 CPP
字号:
// rsa.cpp - written and placed in the public domain by Wei Dai#include "pch.h"#include "rsa.h"#include "asn.h"#include "oids.h"#include "modarith.h"#include "nbtheory.h"#include "sha.h"#include "algparam.h"#include "fips140.h"#if !defined(NDEBUG) && !defined(CRYPTOPP_IS_DLL)#include "pssr.h"NAMESPACE_BEGIN(CryptoPP)void RSA_TestInstantiations(){	RSASS<PKCS1v15, SHA>::Verifier x1(1, 1);	RSASS<PKCS1v15, SHA>::Signer x2(NullRNG(), 1);	RSASS<PKCS1v15, SHA>::Verifier x3(x2);	RSASS<PKCS1v15, SHA>::Verifier x4(x2.GetKey());	RSASS<PSS, SHA>::Verifier x5(x3);#ifndef __MWERKS__	RSASS<PSSR, SHA>::Signer x6 = x2;	x3 = x2;	x6 = x2;#endif	RSAES<PKCS1v15>::Encryptor x7(x2);#ifndef __GNUC__	RSAES<PKCS1v15>::Encryptor x8(x3);#endif	RSAES<OAEP<SHA> >::Encryptor x9(x2);	x4 = x2.GetKey();}NAMESPACE_END#endif#ifndef CRYPTOPP_IMPORTSNAMESPACE_BEGIN(CryptoPP)OID RSAFunction::GetAlgorithmID() const{	return ASN1::rsaEncryption();}void RSAFunction::BERDecodePublicKey(BufferedTransformation &bt, bool, size_t){	BERSequenceDecoder seq(bt);		m_n.BERDecode(seq);		m_e.BERDecode(seq);	seq.MessageEnd();}void RSAFunction::DEREncodePublicKey(BufferedTransformation &bt) const{	DERSequenceEncoder seq(bt);		m_n.DEREncode(seq);		m_e.DEREncode(seq);	seq.MessageEnd();}Integer RSAFunction::ApplyFunction(const Integer &x) const{	DoQuickSanityCheck();	return a_exp_b_mod_c(x, m_e, m_n);}bool RSAFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const{	bool pass = true;	pass = pass && m_n > Integer::One() && m_n.IsOdd();	pass = pass && m_e > Integer::One() && m_e.IsOdd() && m_e < m_n;	return pass;}bool RSAFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const{	return GetValueHelper(this, name, valueType, pValue).Assignable()		CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)		CRYPTOPP_GET_FUNCTION_ENTRY(PublicExponent)		;}void RSAFunction::AssignFrom(const NameValuePairs &source){	AssignFromHelper(this, source)		CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)		CRYPTOPP_SET_FUNCTION_ENTRY(PublicExponent)		;}// *****************************************************************************class RSAPrimeSelector : public PrimeSelector{public:	RSAPrimeSelector(const Integer &e) : m_e(e) {}	bool IsAcceptable(const Integer &candidate) const {return RelativelyPrime(m_e, candidate-Integer::One());}	Integer m_e;};void InvertibleRSAFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg){	int modulusSize = 2048;	alg.GetIntValue(Name::ModulusSize(), modulusSize) || alg.GetIntValue(Name::KeySize(), modulusSize);	if (modulusSize < 16)		throw InvalidArgument("InvertibleRSAFunction: specified modulus size is too small");	m_e = alg.GetValueWithDefault(Name::PublicExponent(), Integer(17));	if (m_e < 3 || m_e.IsEven())		throw InvalidArgument("InvertibleRSAFunction: invalid public exponent");	RSAPrimeSelector selector(m_e);	AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize)		(Name::PointerToPrimeSelector(), selector.GetSelectorPointer());	m_p.GenerateRandom(rng, primeParam);	m_q.GenerateRandom(rng, primeParam);	m_d = m_e.InverseMod(LCM(m_p-1, m_q-1));	assert(m_d.IsPositive());	m_dp = m_d % (m_p-1);	m_dq = m_d % (m_q-1);	m_n = m_p * m_q;	m_u = m_q.InverseMod(m_p);	if (FIPS_140_2_ComplianceEnabled())	{		RSASS<PKCS1v15, SHA>::Signer signer(*this);		RSASS<PKCS1v15, SHA>::Verifier verifier(signer);		SignaturePairwiseConsistencyTest_FIPS_140_Only(signer, verifier);		RSAES<OAEP<SHA> >::Decryptor decryptor(*this);		RSAES<OAEP<SHA> >::Encryptor encryptor(decryptor);		EncryptionPairwiseConsistencyTest_FIPS_140_Only(encryptor, decryptor);	}}void InvertibleRSAFunction::Initialize(RandomNumberGenerator &rng, unsigned int keybits, const Integer &e){	GenerateRandom(rng, MakeParameters(Name::ModulusSize(), (int)keybits)(Name::PublicExponent(), e+e.IsEven()));}void InvertibleRSAFunction::Initialize(const Integer &n, const Integer &e, const Integer &d){	if (n.IsEven() || e.IsEven() | d.IsEven())		throw InvalidArgument("InvertibleRSAFunction: input is not a valid RSA private key");	m_n = n;	m_e = e;	m_d = d;	Integer r = --(d*e);	unsigned int s = 0;	while (r.IsEven())	{		r >>= 1;		s++;	}	ModularArithmetic modn(n);	for (Integer i = 2; ; ++i)	{		Integer a = modn.Exponentiate(i, r);		if (a == 1)			continue;		Integer b;		unsigned int j = 0;		while (a != n-1)		{			b = modn.Square(a);			if (b == 1)			{				m_p = GCD(a-1, n);				m_q = n/m_p;				m_dp = m_d % (m_p-1);				m_dq = m_d % (m_q-1);				m_u = m_q.InverseMod(m_p);				return;			}			if (++j == s)				throw InvalidArgument("InvertibleRSAFunction: input is not a valid RSA private key");			a = b;		}	}}void InvertibleRSAFunction::BERDecodePrivateKey(BufferedTransformation &bt, bool, size_t){	BERSequenceDecoder privateKey(bt);		word32 version;		BERDecodeUnsigned<word32>(privateKey, version, INTEGER, 0, 0);	// check version		m_n.BERDecode(privateKey);		m_e.BERDecode(privateKey);		m_d.BERDecode(privateKey);		m_p.BERDecode(privateKey);		m_q.BERDecode(privateKey);		m_dp.BERDecode(privateKey);		m_dq.BERDecode(privateKey);		m_u.BERDecode(privateKey);	privateKey.MessageEnd();}void InvertibleRSAFunction::DEREncodePrivateKey(BufferedTransformation &bt) const{	DERSequenceEncoder privateKey(bt);		DEREncodeUnsigned<word32>(privateKey, 0);	// version		m_n.DEREncode(privateKey);		m_e.DEREncode(privateKey);		m_d.DEREncode(privateKey);		m_p.DEREncode(privateKey);		m_q.DEREncode(privateKey);		m_dp.DEREncode(privateKey);		m_dq.DEREncode(privateKey);		m_u.DEREncode(privateKey);	privateKey.MessageEnd();}Integer InvertibleRSAFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const {	DoQuickSanityCheck();	ModularArithmetic modn(m_n);	Integer r, rInv;	do {	// do this in a loop for people using small numbers for testing		r.Randomize(rng, Integer::One(), m_n - Integer::One());		rInv = modn.MultiplicativeInverse(r);	} while (rInv.IsZero());	Integer re = modn.Exponentiate(r, m_e);	re = modn.Multiply(re, x);			// blind	// here we follow the notation of PKCS #1 and let u=q inverse mod p	// but in ModRoot, u=p inverse mod q, so we reverse the order of p and q	Integer y = ModularRoot(re, m_dq, m_dp, m_q, m_p, m_u);	y = modn.Multiply(y, rInv);				// unblind	if (modn.Exponentiate(y, m_e) != x)		// check		throw Exception(Exception::OTHER_ERROR, "InvertibleRSAFunction: computational error during private key operation");	return y;}bool InvertibleRSAFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const{	bool pass = RSAFunction::Validate(rng, level);	pass = pass && m_p > Integer::One() && m_p.IsOdd() && m_p < m_n;	pass = pass && m_q > Integer::One() && m_q.IsOdd() && m_q < m_n;	pass = pass && m_d > Integer::One() && m_d.IsOdd() && m_d < m_n;	pass = pass && m_dp > Integer::One() && m_dp.IsOdd() && m_dp < m_p;	pass = pass && m_dq > Integer::One() && m_dq.IsOdd() && m_dq < m_q;	pass = pass && m_u.IsPositive() && m_u < m_p;	if (level >= 1)	{		pass = pass && m_p * m_q == m_n;		pass = pass && m_e*m_d % LCM(m_p-1, m_q-1) == 1;		pass = pass && m_dp == m_d%(m_p-1) && m_dq == m_d%(m_q-1);		pass = pass && m_u * m_q % m_p == 1;	}	if (level >= 2)		pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);	return pass;}bool InvertibleRSAFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const{	return GetValueHelper<RSAFunction>(this, name, valueType, pValue).Assignable()		CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)		CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)		CRYPTOPP_GET_FUNCTION_ENTRY(PrivateExponent)		CRYPTOPP_GET_FUNCTION_ENTRY(ModPrime1PrivateExponent)		CRYPTOPP_GET_FUNCTION_ENTRY(ModPrime2PrivateExponent)		CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)		;}void InvertibleRSAFunction::AssignFrom(const NameValuePairs &source){	AssignFromHelper<RSAFunction>(this, source)		CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)		CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)		CRYPTOPP_SET_FUNCTION_ENTRY(PrivateExponent)		CRYPTOPP_SET_FUNCTION_ENTRY(ModPrime1PrivateExponent)		CRYPTOPP_SET_FUNCTION_ENTRY(ModPrime2PrivateExponent)		CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)		;}// *****************************************************************************Integer RSAFunction_ISO::ApplyFunction(const Integer &x) const{	Integer t = RSAFunction::ApplyFunction(x);	return t % 16 == 12 ? t : m_n - t;}Integer InvertibleRSAFunction_ISO::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const {	Integer t = InvertibleRSAFunction::CalculateInverse(rng, x);	return STDMIN(t, m_n-t);}NAMESPACE_END#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -