⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rw.cpp

📁 lots Elliptic curve cryptography codes. Use Visual c++ to compile
💻 CPP
字号:
// rw.cpp - written and placed in the public domain by Wei Dai#include "pch.h"#include "rw.h"#include "nbtheory.h"#include "asn.h"#ifndef CRYPTOPP_IMPORTSNAMESPACE_BEGIN(CryptoPP)void RWFunction::BERDecode(BufferedTransformation &bt){	BERSequenceDecoder seq(bt);	m_n.BERDecode(seq);	seq.MessageEnd();}void RWFunction::DEREncode(BufferedTransformation &bt) const{	DERSequenceEncoder seq(bt);	m_n.DEREncode(seq);	seq.MessageEnd();}Integer RWFunction::ApplyFunction(const Integer &in) const{	DoQuickSanityCheck();	Integer out = in.Squared()%m_n;	const word r = 12;	// this code was written to handle both r = 6 and r = 12,	// but now only r = 12 is used in P1363	const word r2 = r/2;	const word r3a = (16 + 5 - r) % 16;	// n%16 could be 5 or 13	const word r3b = (16 + 13 - r) % 16;	const word r4 = (8 + 5 - r/2) % 8;	// n%8 == 5	switch (out % 16)	{	case r:		break;	case r2:	case r2+8:		out <<= 1;		break;	case r3a:	case r3b:		out.Negate();		out += m_n;		break;	case r4:	case r4+8:		out.Negate();		out += m_n;		out <<= 1;		break;	default:		out = Integer::Zero();	}	return out;}bool RWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const{	bool pass = true;	pass = pass && m_n > Integer::One() && m_n%8 == 5;	return pass;}bool RWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const{	return GetValueHelper(this, name, valueType, pValue).Assignable()		CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)		;}void RWFunction::AssignFrom(const NameValuePairs &source){	AssignFromHelper(this, source)		CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)		;}// *****************************************************************************// private key operations:// generate a random private keyvoid InvertibleRWFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg){	int modulusSize = 2048;	alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);	if (modulusSize < 16)		throw InvalidArgument("InvertibleRWFunction: specified modulus length is too small");	AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize);	m_p.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 3)("Mod", 8)));	m_q.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 7)("Mod", 8)));	m_n = m_p * m_q;	m_u = m_q.InverseMod(m_p);}void InvertibleRWFunction::BERDecode(BufferedTransformation &bt){	BERSequenceDecoder seq(bt);	m_n.BERDecode(seq);	m_p.BERDecode(seq);	m_q.BERDecode(seq);	m_u.BERDecode(seq);	seq.MessageEnd();}void InvertibleRWFunction::DEREncode(BufferedTransformation &bt) const{	DERSequenceEncoder seq(bt);	m_n.DEREncode(seq);	m_p.DEREncode(seq);	m_q.DEREncode(seq);	m_u.DEREncode(seq);	seq.MessageEnd();}Integer InvertibleRWFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const{	DoQuickSanityCheck();	ModularArithmetic modn(m_n);	Integer r, rInv;	do {	// do this in a loop for people using small numbers for testing		r.Randomize(rng, Integer::One(), m_n - Integer::One());		rInv = modn.MultiplicativeInverse(r);	} while (rInv.IsZero());	Integer re = modn.Square(r);	re = modn.Multiply(re, x);			// blind	Integer cp=re%m_p, cq=re%m_q;	if (Jacobi(cp, m_p) * Jacobi(cq, m_q) != 1)	{		cp = cp.IsOdd() ? (cp+m_p) >> 1 : cp >> 1;		cq = cq.IsOdd() ? (cq+m_q) >> 1 : cq >> 1;	}	#pragma omp parallel		#pragma omp sections		{			#pragma omp section				cp = ModularSquareRoot(cp, m_p);			#pragma omp section				cq = ModularSquareRoot(cq, m_q);		}	Integer y = CRT(cq, m_q, cp, m_p, m_u);	y = modn.Multiply(y, rInv);				// unblind	y = STDMIN(y, m_n-y);	if (ApplyFunction(y) != x)				// check		throw Exception(Exception::OTHER_ERROR, "InvertibleRWFunction: computational error during private key operation");	return y;}bool InvertibleRWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const{	bool pass = RWFunction::Validate(rng, level);	pass = pass && m_p > Integer::One() && m_p%8 == 3 && m_p < m_n;	pass = pass && m_q > Integer::One() && m_q%8 == 7 && m_q < m_n;	pass = pass && m_u.IsPositive() && m_u < m_p;	if (level >= 1)	{		pass = pass && m_p * m_q == m_n;		pass = pass && m_u * m_q % m_p == 1;	}	if (level >= 2)		pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);	return pass;}bool InvertibleRWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const{	return GetValueHelper<RWFunction>(this, name, valueType, pValue).Assignable()		CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)		CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)		CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)		;}void InvertibleRWFunction::AssignFrom(const NameValuePairs &source){	AssignFromHelper<RWFunction>(this, source)		CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)		CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)		CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)		;}NAMESPACE_END#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -