⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 algebra.h

📁 lots Elliptic curve cryptography codes. Use Visual c++ to compile
💻 H
字号:
#ifndef CRYPTOPP_ALGEBRA_H#define CRYPTOPP_ALGEBRA_H#include "config.h"NAMESPACE_BEGIN(CryptoPP)class Integer;// "const Element&" returned by member functions are references// to internal data members. Since each object may have only// one such data member for holding results, the following code// will produce incorrect results:// abcd = group.Add(group.Add(a,b), group.Add(c,d));// But this should be fine:// abcd = group.Add(a, group.Add(b, group.Add(c,d));//! Abstract Grouptemplate <class T> class CRYPTOPP_NO_VTABLE AbstractGroup{public:	typedef T Element;	virtual ~AbstractGroup() {}	virtual bool Equal(const Element &a, const Element &b) const =0;	virtual const Element& Identity() const =0;	virtual const Element& Add(const Element &a, const Element &b) const =0;	virtual const Element& Inverse(const Element &a) const =0;	virtual bool InversionIsFast() const {return false;}	virtual const Element& Double(const Element &a) const;	virtual const Element& Subtract(const Element &a, const Element &b) const;	virtual Element& Accumulate(Element &a, const Element &b) const;	virtual Element& Reduce(Element &a, const Element &b) const;	virtual Element ScalarMultiply(const Element &a, const Integer &e) const;	virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;	virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;};//! Abstract Ringtemplate <class T> class CRYPTOPP_NO_VTABLE AbstractRing : public AbstractGroup<T>{public:	typedef T Element;	AbstractRing() {m_mg.m_pRing = this;}	AbstractRing(const AbstractRing &source) {m_mg.m_pRing = this;}	AbstractRing& operator=(const AbstractRing &source) {return *this;}	virtual bool IsUnit(const Element &a) const =0;	virtual const Element& MultiplicativeIdentity() const =0;	virtual const Element& Multiply(const Element &a, const Element &b) const =0;	virtual const Element& MultiplicativeInverse(const Element &a) const =0;	virtual const Element& Square(const Element &a) const;	virtual const Element& Divide(const Element &a, const Element &b) const;	virtual Element Exponentiate(const Element &a, const Integer &e) const;	virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;	virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;	virtual const AbstractGroup<T>& MultiplicativeGroup() const		{return m_mg;}private:	class MultiplicativeGroupT : public AbstractGroup<T>	{	public:		const AbstractRing<T>& GetRing() const			{return *m_pRing;}		bool Equal(const Element &a, const Element &b) const			{return GetRing().Equal(a, b);}		const Element& Identity() const			{return GetRing().MultiplicativeIdentity();}		const Element& Add(const Element &a, const Element &b) const			{return GetRing().Multiply(a, b);}		Element& Accumulate(Element &a, const Element &b) const			{return a = GetRing().Multiply(a, b);}		const Element& Inverse(const Element &a) const			{return GetRing().MultiplicativeInverse(a);}		const Element& Subtract(const Element &a, const Element &b) const			{return GetRing().Divide(a, b);}		Element& Reduce(Element &a, const Element &b) const			{return a = GetRing().Divide(a, b);}		const Element& Double(const Element &a) const			{return GetRing().Square(a);}		Element ScalarMultiply(const Element &a, const Integer &e) const			{return GetRing().Exponentiate(a, e);}		Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const			{return GetRing().CascadeExponentiate(x, e1, y, e2);}		void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const			{GetRing().SimultaneousExponentiate(results, base, exponents, exponentsCount);}		const AbstractRing<T> *m_pRing;	};	MultiplicativeGroupT m_mg;};// ********************************************************//! Base and Exponenttemplate <class T, class E = Integer>struct BaseAndExponent{public:	BaseAndExponent() {}	BaseAndExponent(const T &base, const E &exponent) : base(base), exponent(exponent) {}	bool operator<(const BaseAndExponent<T, E> &rhs) const {return exponent < rhs.exponent;}	T base;	E exponent;};// VC60 workaround: incomplete member template supporttemplate <class Element, class Iterator>	Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end);template <class Element, class Iterator>	Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end);// ********************************************************//! Abstract Euclidean Domaintemplate <class T> class CRYPTOPP_NO_VTABLE AbstractEuclideanDomain : public AbstractRing<T>{public:	typedef T Element;	virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0;	virtual const Element& Mod(const Element &a, const Element &b) const =0;	virtual const Element& Gcd(const Element &a, const Element &b) const;protected:	mutable Element result;};// ********************************************************//! EuclideanDomainOftemplate <class T> class EuclideanDomainOf : public AbstractEuclideanDomain<T>{public:	typedef T Element;	EuclideanDomainOf() {}	bool Equal(const Element &a, const Element &b) const		{return a==b;}	const Element& Identity() const		{return Element::Zero();}	const Element& Add(const Element &a, const Element &b) const		{return result = a+b;}	Element& Accumulate(Element &a, const Element &b) const		{return a+=b;}	const Element& Inverse(const Element &a) const		{return result = -a;}	const Element& Subtract(const Element &a, const Element &b) const		{return result = a-b;}	Element& Reduce(Element &a, const Element &b) const		{return a-=b;}	const Element& Double(const Element &a) const		{return result = a.Doubled();}	const Element& MultiplicativeIdentity() const		{return Element::One();}	const Element& Multiply(const Element &a, const Element &b) const		{return result = a*b;}	const Element& Square(const Element &a) const		{return result = a.Squared();}	bool IsUnit(const Element &a) const		{return a.IsUnit();}	const Element& MultiplicativeInverse(const Element &a) const		{return result = a.MultiplicativeInverse();}	const Element& Divide(const Element &a, const Element &b) const		{return result = a/b;}	const Element& Mod(const Element &a, const Element &b) const		{return result = a%b;}	void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const		{Element::Divide(r, q, a, d);}	bool operator==(const EuclideanDomainOf<T> &rhs) const		{return true;}private:	mutable Element result;};//! Quotient Ringtemplate <class T> class QuotientRing : public AbstractRing<typename T::Element>{public:	typedef T EuclideanDomain;	typedef typename T::Element Element;	QuotientRing(const EuclideanDomain &domain, const Element &modulus)		: m_domain(domain), m_modulus(modulus) {}	const EuclideanDomain & GetDomain() const		{return m_domain;}	const Element& GetModulus() const		{return m_modulus;}	bool Equal(const Element &a, const Element &b) const		{return m_domain.Equal(m_domain.Mod(m_domain.Subtract(a, b), m_modulus), m_domain.Identity());}	const Element& Identity() const		{return m_domain.Identity();}	const Element& Add(const Element &a, const Element &b) const		{return m_domain.Add(a, b);}	Element& Accumulate(Element &a, const Element &b) const		{return m_domain.Accumulate(a, b);}	const Element& Inverse(const Element &a) const		{return m_domain.Inverse(a);}	const Element& Subtract(const Element &a, const Element &b) const		{return m_domain.Subtract(a, b);}	Element& Reduce(Element &a, const Element &b) const		{return m_domain.Reduce(a, b);}	const Element& Double(const Element &a) const		{return m_domain.Double(a);}	bool IsUnit(const Element &a) const		{return m_domain.IsUnit(m_domain.Gcd(a, m_modulus));}	const Element& MultiplicativeIdentity() const		{return m_domain.MultiplicativeIdentity();}	const Element& Multiply(const Element &a, const Element &b) const		{return m_domain.Mod(m_domain.Multiply(a, b), m_modulus);}	const Element& Square(const Element &a) const		{return m_domain.Mod(m_domain.Square(a), m_modulus);}	const Element& MultiplicativeInverse(const Element &a) const;	bool operator==(const QuotientRing<T> &rhs) const		{return m_domain == rhs.m_domain && m_modulus == rhs.m_modulus;}protected:	EuclideanDomain m_domain;	Element m_modulus;};NAMESPACE_END#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES#include "algebra.cpp"#endif#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -