⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 polynomi.cpp

📁 lots Elliptic curve cryptography codes. Use Visual c++ to compile
💻 CPP
字号:
// polynomi.cpp - written and placed in the public domain by Wei Dai// Part of the code for polynomial evaluation and interpolation// originally came from Hal Finney's public domain secsplit.c.#include "pch.h"#include "polynomi.h"#include "secblock.h"#include <sstream>#include <iostream>NAMESPACE_BEGIN(CryptoPP)template <class T>void PolynomialOver<T>::Randomize(RandomNumberGenerator &rng, const RandomizationParameter &parameter, const Ring &ring){	m_coefficients.resize(parameter.m_coefficientCount);	for (unsigned int i=0; i<m_coefficients.size(); ++i)		m_coefficients[i] = ring.RandomElement(rng, parameter.m_coefficientParameter);}template <class T>void PolynomialOver<T>::FromStr(const char *str, const Ring &ring){	std::istringstream in((char *)str);	bool positive = true;	CoefficientType coef;	unsigned int power;	while (in)	{		std::ws(in);		if (in.peek() == 'x')			coef = ring.MultiplicativeIdentity();		else			in >> coef;		std::ws(in);		if (in.peek() == 'x')		{			in.get();			std::ws(in);			if (in.peek() == '^')			{				in.get();				in >> power;			}			else				power = 1;		}		else			power = 0;		if (!positive)			coef = ring.Inverse(coef);		SetCoefficient(power, coef, ring);		std::ws(in);		switch (in.get())		{		case '+':			positive = true;			break;		case '-':			positive = false;			break;		default:			return;		// something's wrong with the input string		}	}}template <class T>unsigned int PolynomialOver<T>::CoefficientCount(const Ring &ring) const{	unsigned count = m_coefficients.size();	while (count && ring.Equal(m_coefficients[count-1], ring.Identity()))		count--;	const_cast<std::vector<CoefficientType> &>(m_coefficients).resize(count);	return count;}template <class T>typename PolynomialOver<T>::CoefficientType PolynomialOver<T>::GetCoefficient(unsigned int i, const Ring &ring) const {	return (i < m_coefficients.size()) ? m_coefficients[i] : ring.Identity();}template <class T>PolynomialOver<T>&  PolynomialOver<T>::operator=(const PolynomialOver<T>& t){	if (this != &t)	{		m_coefficients.resize(t.m_coefficients.size());		for (unsigned int i=0; i<m_coefficients.size(); i++)			m_coefficients[i] = t.m_coefficients[i];	}	return *this;}template <class T>PolynomialOver<T>& PolynomialOver<T>::Accumulate(const PolynomialOver<T>& t, const Ring &ring){	unsigned int count = t.CoefficientCount(ring);	if (count > CoefficientCount(ring))		m_coefficients.resize(count, ring.Identity());	for (unsigned int i=0; i<count; i++)		ring.Accumulate(m_coefficients[i], t.GetCoefficient(i, ring));	return *this;}template <class T>PolynomialOver<T>& PolynomialOver<T>::Reduce(const PolynomialOver<T>& t, const Ring &ring){	unsigned int count = t.CoefficientCount(ring);	if (count > CoefficientCount(ring))		m_coefficients.resize(count, ring.Identity());	for (unsigned int i=0; i<count; i++)		ring.Reduce(m_coefficients[i], t.GetCoefficient(i, ring));	return *this;}template <class T>typename PolynomialOver<T>::CoefficientType PolynomialOver<T>::EvaluateAt(const CoefficientType &x, const Ring &ring) const{	int degree = Degree(ring);	if (degree < 0)		return ring.Identity();	CoefficientType result = m_coefficients[degree];	for (int j=degree-1; j>=0; j--)	{		result = ring.Multiply(result, x);		ring.Accumulate(result, m_coefficients[j]);	}	return result;}template <class T>PolynomialOver<T>& PolynomialOver<T>::ShiftLeft(unsigned int n, const Ring &ring){	unsigned int i = CoefficientCount(ring) + n;	m_coefficients.resize(i, ring.Identity());	while (i > n)	{		i--;		m_coefficients[i] = m_coefficients[i-n];	}	while (i)	{		i--;		m_coefficients[i] = ring.Identity();	}	return *this;}template <class T>PolynomialOver<T>& PolynomialOver<T>::ShiftRight(unsigned int n, const Ring &ring){	unsigned int count = CoefficientCount(ring);	if (count > n)	{		for (unsigned int i=0; i<count-n; i++)			m_coefficients[i] = m_coefficients[i+n];		m_coefficients.resize(count-n, ring.Identity());	}	else		m_coefficients.resize(0, ring.Identity());	return *this;}template <class T>void PolynomialOver<T>::SetCoefficient(unsigned int i, const CoefficientType &value, const Ring &ring){	if (i >= m_coefficients.size())		m_coefficients.resize(i+1, ring.Identity());	m_coefficients[i] = value;}template <class T>void PolynomialOver<T>::Negate(const Ring &ring){	unsigned int count = CoefficientCount(ring);	for (unsigned int i=0; i<count; i++)		m_coefficients[i] = ring.Inverse(m_coefficients[i]);}template <class T>void PolynomialOver<T>::swap(PolynomialOver<T> &t){	m_coefficients.swap(t.m_coefficients);}template <class T>bool PolynomialOver<T>::Equals(const PolynomialOver<T>& t, const Ring &ring) const{	unsigned int count = CoefficientCount(ring);	if (count != t.CoefficientCount(ring))		return false;	for (unsigned int i=0; i<count; i++)		if (!ring.Equal(m_coefficients[i], t.m_coefficients[i]))			return false;	return true;}template <class T>PolynomialOver<T> PolynomialOver<T>::Plus(const PolynomialOver<T>& t, const Ring &ring) const{	unsigned int i;	unsigned int count = CoefficientCount(ring);	unsigned int tCount = t.CoefficientCount(ring);	if (count > tCount)	{		PolynomialOver<T> result(ring, count);		for (i=0; i<tCount; i++)			result.m_coefficients[i] = ring.Add(m_coefficients[i], t.m_coefficients[i]);		for (; i<count; i++)			result.m_coefficients[i] = m_coefficients[i];		return result;	}	else	{		PolynomialOver<T> result(ring, tCount);		for (i=0; i<count; i++)			result.m_coefficients[i] = ring.Add(m_coefficients[i], t.m_coefficients[i]);		for (; i<tCount; i++)			result.m_coefficients[i] = t.m_coefficients[i];		return result;	}}template <class T>PolynomialOver<T> PolynomialOver<T>::Minus(const PolynomialOver<T>& t, const Ring &ring) const{	unsigned int i;	unsigned int count = CoefficientCount(ring);	unsigned int tCount = t.CoefficientCount(ring);	if (count > tCount)	{		PolynomialOver<T> result(ring, count);		for (i=0; i<tCount; i++)			result.m_coefficients[i] = ring.Subtract(m_coefficients[i], t.m_coefficients[i]);		for (; i<count; i++)			result.m_coefficients[i] = m_coefficients[i];		return result;	}	else	{		PolynomialOver<T> result(ring, tCount);		for (i=0; i<count; i++)			result.m_coefficients[i] = ring.Subtract(m_coefficients[i], t.m_coefficients[i]);		for (; i<tCount; i++)			result.m_coefficients[i] = ring.Inverse(t.m_coefficients[i]);		return result;	}}template <class T>PolynomialOver<T> PolynomialOver<T>::Inverse(const Ring &ring) const{	unsigned int count = CoefficientCount(ring);	PolynomialOver<T> result(ring, count);	for (unsigned int i=0; i<count; i++)		result.m_coefficients[i] = ring.Inverse(m_coefficients[i]);	return result;}template <class T>PolynomialOver<T> PolynomialOver<T>::Times(const PolynomialOver<T>& t, const Ring &ring) const{	if (IsZero(ring) || t.IsZero(ring))		return PolynomialOver<T>();	unsigned int count1 = CoefficientCount(ring), count2 = t.CoefficientCount(ring);	PolynomialOver<T> result(ring, count1 + count2 - 1);	for (unsigned int i=0; i<count1; i++)		for (unsigned int j=0; j<count2; j++)			ring.Accumulate(result.m_coefficients[i+j], ring.Multiply(m_coefficients[i], t.m_coefficients[j]));	return result;}template <class T>PolynomialOver<T> PolynomialOver<T>::DividedBy(const PolynomialOver<T>& t, const Ring &ring) const{	PolynomialOver<T> remainder, quotient;	Divide(remainder, quotient, *this, t, ring);	return quotient;}template <class T>PolynomialOver<T> PolynomialOver<T>::Modulo(const PolynomialOver<T>& t, const Ring &ring) const{	PolynomialOver<T> remainder, quotient;	Divide(remainder, quotient, *this, t, ring);	return remainder;}template <class T>PolynomialOver<T> PolynomialOver<T>::MultiplicativeInverse(const Ring &ring) const{	return Degree(ring)==0 ? ring.MultiplicativeInverse(m_coefficients[0]) : ring.Identity();}template <class T>bool PolynomialOver<T>::IsUnit(const Ring &ring) const{	return Degree(ring)==0 && ring.IsUnit(m_coefficients[0]);}template <class T>std::istream& PolynomialOver<T>::Input(std::istream &in, const Ring &ring){	char c;	unsigned int length = 0;	SecBlock<char> str(length + 16);	bool paren = false;	std::ws(in);	if (in.peek() == '(')	{		paren = true;		in.get();	}	do	{		in.read(&c, 1);		str[length++] = c;		if (length >= str.size())			str.Grow(length + 16);	}	// if we started with a left paren, then read until we find a right paren,	// otherwise read until the end of the line	while (in && ((paren && c != ')') || (!paren && c != '\n')));	str[length-1] = '\0';	*this = PolynomialOver<T>(str, ring);	return in;}template <class T>std::ostream& PolynomialOver<T>::Output(std::ostream &out, const Ring &ring) const{	unsigned int i = CoefficientCount(ring);	if (i)	{		bool firstTerm = true;		while (i--)		{			if (m_coefficients[i] != ring.Identity())			{				if (firstTerm)				{					firstTerm = false;					if (!i || !ring.Equal(m_coefficients[i], ring.MultiplicativeIdentity()))						out << m_coefficients[i];				}				else				{					CoefficientType inverse = ring.Inverse(m_coefficients[i]);					std::ostringstream pstr, nstr;					pstr << m_coefficients[i];					nstr << inverse;					if (pstr.str().size() <= nstr.str().size())					{						out << " + "; 						if (!i || !ring.Equal(m_coefficients[i], ring.MultiplicativeIdentity()))							out << m_coefficients[i];					}					else					{						out << " - "; 						if (!i || !ring.Equal(inverse, ring.MultiplicativeIdentity()))							out << inverse;					}				}				switch (i)				{				case 0:					break;				case 1:					out << "x";					break;				default:					out << "x^" << i;				}			}		}	}	else	{		out << ring.Identity();	}	return out;}template <class T>void PolynomialOver<T>::Divide(PolynomialOver<T> &r, PolynomialOver<T> &q, const PolynomialOver<T> &a, const PolynomialOver<T> &d, const Ring &ring){	unsigned int i = a.CoefficientCount(ring);	const int dDegree = d.Degree(ring);	if (dDegree < 0)		throw DivideByZero();	r = a;	q.m_coefficients.resize(STDMAX(0, int(i - dDegree)));	while (i > (unsigned int)dDegree)	{		--i;		q.m_coefficients[i-dDegree] = ring.Divide(r.m_coefficients[i], d.m_coefficients[dDegree]);		for (int j=0; j<=dDegree; j++)			ring.Reduce(r.m_coefficients[i-dDegree+j], ring.Multiply(q.m_coefficients[i-dDegree], d.m_coefficients[j]));	}	r.CoefficientCount(ring);	// resize r.m_coefficients}// ********************************************************// helper function for Interpolate() and InterpolateAt()template <class T>void RingOfPolynomialsOver<T>::CalculateAlpha(std::vector<CoefficientType> &alpha, const CoefficientType x[], const CoefficientType y[], unsigned int n) const{	for (unsigned int j=0; j<n; ++j)		alpha[j] = y[j];	for (unsigned int k=1; k<n; ++k)	{		for (unsigned int j=n-1; j>=k; --j)		{			m_ring.Reduce(alpha[j], alpha[j-1]);			CoefficientType d = m_ring.Subtract(x[j], x[j-k]);			if (!m_ring.IsUnit(d))				throw InterpolationFailed();			alpha[j] = m_ring.Divide(alpha[j], d);		}	}}template <class T>typename RingOfPolynomialsOver<T>::Element RingOfPolynomialsOver<T>::Interpolate(const CoefficientType x[], const CoefficientType y[], unsigned int n) const{	assert(n > 0);	std::vector<CoefficientType> alpha(n);	CalculateAlpha(alpha, x, y, n);	std::vector<CoefficientType> coefficients((size_t)n, m_ring.Identity());	coefficients[0] = alpha[n-1];	for (int j=n-2; j>=0; --j)	{		for (unsigned int i=n-j-1; i>0; i--)			coefficients[i] = m_ring.Subtract(coefficients[i-1], m_ring.Multiply(coefficients[i], x[j]));		coefficients[0] = m_ring.Subtract(alpha[j], m_ring.Multiply(coefficients[0], x[j]));	}	return PolynomialOver<T>(coefficients.begin(), coefficients.end());}template <class T>typename RingOfPolynomialsOver<T>::CoefficientType RingOfPolynomialsOver<T>::InterpolateAt(const CoefficientType &position, const CoefficientType x[], const CoefficientType y[], unsigned int n) const{	assert(n > 0);	std::vector<CoefficientType> alpha(n);	CalculateAlpha(alpha, x, y, n);	CoefficientType result = alpha[n-1];	for (int j=n-2; j>=0; --j)	{		result = m_ring.Multiply(result, m_ring.Subtract(position, x[j]));		m_ring.Accumulate(result, alpha[j]);	}	return result;}template <class Ring, class Element>void PrepareBulkPolynomialInterpolation(const Ring &ring, Element *w, const Element x[], unsigned int n){	for (unsigned int i=0; i<n; i++)	{		Element t = ring.MultiplicativeIdentity();		for (unsigned int j=0; j<n; j++)			if (i != j)				t = ring.Multiply(t, ring.Subtract(x[i], x[j]));		w[i] = ring.MultiplicativeInverse(t);	}}template <class Ring, class Element>void PrepareBulkPolynomialInterpolationAt(const Ring &ring, Element *v, const Element &position, const Element x[], const Element w[], unsigned int n){	assert(n > 0);	std::vector<Element> a(2*n-1);	unsigned int i;	for (i=0; i<n; i++)		a[n-1+i] = ring.Subtract(position, x[i]);	for (i=n-1; i>1; i--)		a[i-1] = ring.Multiply(a[2*i], a[2*i-1]);	a[0] = ring.MultiplicativeIdentity();	for (i=0; i<n-1; i++)	{		std::swap(a[2*i+1], a[2*i+2]);		a[2*i+1] = ring.Multiply(a[i], a[2*i+1]);		a[2*i+2] = ring.Multiply(a[i], a[2*i+2]);	}	for (i=0; i<n; i++)		v[i] = ring.Multiply(a[n-1+i], w[i]);}template <class Ring, class Element>Element BulkPolynomialInterpolateAt(const Ring &ring, const Element y[], const Element v[], unsigned int n){	Element result = ring.Identity();	for (unsigned int i=0; i<n; i++)		ring.Accumulate(result, ring.Multiply(y[i], v[i]));	return result;}// ********************************************************template <class T, int instance>const PolynomialOverFixedRing<T, instance> &PolynomialOverFixedRing<T, instance>::Zero(){	return Singleton<ThisType>().Ref();}template <class T, int instance>const PolynomialOverFixedRing<T, instance> &PolynomialOverFixedRing<T, instance>::One(){	return Singleton<ThisType, NewOnePolynomial>().Ref();}NAMESPACE_END

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -