⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fxupair.c

📁 主要进行大规模的电路综合
💻 C
📖 第 1 页 / 共 2 页
字号:
/**CFile****************************************************************  FileName    [fxuPair.c]  PackageName [MVSIS 2.0: Multi-valued logic synthesis system.]  Synopsis    [Operations on cube pairs.]  Author      [MVSIS Group]    Affiliation [UC Berkeley]  Date        [Ver. 1.0. Started - February 1, 2003.]  Revision    [$Id: fxuPair.c,v 1.6 2003/05/27 23:15:54 alanmi Exp $]***********************************************************************/#include "fxuInt.h"///////////////////////////////////////////////////////////////////////////                        DECLARATIONS                              ///////////////////////////////////////////////////////////////////////////#define MAX_PRIMES      304static s_Primes[MAX_PRIMES] ={	2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 	41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 	97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 	157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 	227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 	283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 	367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 	439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 	509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 	599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 	661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 	751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 	829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 	919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 	1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 	1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 	1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 	1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 	1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 	1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 	1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 	1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 	1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 	1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 	1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 	1993, 1997, 1999, 2003 };///////////////////////////////////////////////////////////////////////////                     FUNCTION DEFITIONS                           ////////////////////////////////////////////////////////////////////////////**Function*************************************************************  Synopsis    [Find the canonical permutation of two cubes in the pair.]  Description []                 SideEffects []  SeeAlso     []***********************************************************************/void Fxu_PairCanonicize( Fxu_Cube ** ppCube1, Fxu_Cube ** ppCube2 ){	Fxu_Lit * pLit1, * pLit2;	Fxu_Cube * pCubeTemp;	// walk through the cubes to determine 	// the one that has higher first variable	pLit1 = (*ppCube1)->lLits.pHead;	pLit2 = (*ppCube2)->lLits.pHead;	while ( 1 )	{		if ( pLit1->iVar == pLit2->iVar )		{			pLit1 = pLit1->pHNext;			pLit2 = pLit2->pHNext;			continue;		}		assert( pLit1 && pLit2 ); // this is true if the covers are SCC-free		if ( pLit1->iVar > pLit2->iVar )		{ // swap the cubes			pCubeTemp = *ppCube1;			*ppCube1  = *ppCube2;			*ppCube2  = pCubeTemp;		}		break;	}}/**Function*************************************************************  Synopsis    [Find the canonical permutation of two cubes in the pair.]  Description []                 SideEffects []  SeeAlso     []***********************************************************************/void Fxu_PairCanonicize2( Fxu_Cube ** ppCube1, Fxu_Cube ** ppCube2 ){	Fxu_Cube * pCubeTemp;    // canonicize the pair by ordering the cubes	if ( (*ppCube1)->iCube > (*ppCube2)->iCube )	{ // swap the cubes		pCubeTemp = *ppCube1;		*ppCube1  = *ppCube2;		*ppCube2  = pCubeTemp;    }}/**Function*************************************************************  Synopsis    []  Description []                 SideEffects []  SeeAlso     []***********************************************************************/unsigned Fxu_PairHashKeyArray( Fxu_Matrix * p, int piVarsC1[], int piVarsC2[], int nVarsC1, int nVarsC2 ){	int Offset1 = 100, Offset2 = 200, i;	unsigned Key;	// compute the hash key	Key = 0;    for ( i = 0; i < nVarsC1; i++ )    	Key ^= s_Primes[Offset1+i] * piVarsC1[i];    for ( i = 0; i < nVarsC2; i++ )    	Key ^= s_Primes[Offset2+i] * piVarsC2[i];	return Key;}/**Function*************************************************************  Synopsis    [Computes the hash key of the divisor represented by the pair of cubes.]  Description [Goes through the variables in both cubes. Skips the identical  ones (this corresponds to making the cubes cube-free). Computes the hash   value of the cubes. Assigns the number of literals in the base and in the   cubes without base.]                 SideEffects []  SeeAlso     []***********************************************************************/unsigned Fxu_PairHashKey( Fxu_Matrix * p, Fxu_Cube * pCube1, Fxu_Cube * pCube2,                          int * pnBase, int * pnLits1, int * pnLits2 ){	int Offset1 = 100, Offset2 = 200;    int nBase, nLits1, nLits2;	Fxu_Lit * pLit1, * pLit2;	unsigned Key;	// compute the hash key	Key    = 0;	nLits1 = 0;	nLits2 = 0;	nBase  = 0;	pLit1  = pCube1->lLits.pHead;	pLit2  = pCube2->lLits.pHead;	while ( 1 )	{		if ( pLit1 && pLit2 )		{			if ( pLit1->iVar == pLit2->iVar )			{ // ensure cube-free				pLit1 = pLit1->pHNext;				pLit2 = pLit2->pHNext;				// add this literal to the base				nBase++;			}			else if ( pLit1->iVar < pLit2->iVar )			{				Key  ^= s_Primes[Offset1+nLits1] * pLit1->iVar;				pLit1 = pLit1->pHNext;				nLits1++;			}			else			{				Key  ^= s_Primes[Offset2+nLits2] * pLit2->iVar;				pLit2 = pLit2->pHNext;				nLits2++;			}		}		else if ( pLit1 && !pLit2 )		{			Key  ^= s_Primes[Offset1+nLits1] * pLit1->iVar;			pLit1 = pLit1->pHNext;			nLits1++;		}		else if ( !pLit1 && pLit2 )		{			Key  ^= s_Primes[Offset2+nLits2] * pLit2->iVar;			pLit2 = pLit2->pHNext;			nLits2++;		}		else			break;	}    *pnBase  = nBase;    *pnLits1 = nLits1;    *pnLits2 = nLits2;	return Key;}/**Function*************************************************************  Synopsis    [Computes the hash key of the divisor represented by the pair of cubes.]  Description [This procedure is different from the previous binary  version in that it checks show many MV variables are present in the  cube free divisor. If there is only 1 MV variable, it returns 0.  In this case, the cube pair should be skipped.]                 SideEffects []  SeeAlso     []***********************************************************************/unsigned Fxu_PairHashKeyMv( Fxu_Matrix * p, Fxu_Cube * pCube1, Fxu_Cube * pCube2,                          int * pnBase, int * pnLits1, int * pnLits2 ){    int * pValue2Node = p->pValue2Node;    int Counter = 0;    int iNode   = -1;	int Offset1 = 100, Offset2 = 200;    int nBase, nLits1, nLits2;	Fxu_Lit * pLit1, * pLit2;	unsigned Key;	// compute the hash key	Key    = 0;	nLits1 = 0;	nLits2 = 0;	nBase  = 0;	pLit1  = pCube1->lLits.pHead;	pLit2  = pCube2->lLits.pHead;	while ( 1 )	{		if ( pLit1 && pLit2 )		{			if ( pLit1->iVar == pLit2->iVar )			{ // ensure cube-free				pLit1 = pLit1->pHNext;				pLit2 = pLit2->pHNext;				// add this literal to the base				nBase++;			}			else if ( pLit1->iVar < pLit2->iVar )			{                if ( Counter < 2 )                {                    if ( iNode == -1 )                    {                        iNode = pValue2Node[pLit1->iVar];                        Counter = 1;                    }                    else if ( iNode != pValue2Node[pLit1->iVar] )                        Counter = 2;                }				Key  ^= s_Primes[Offset1+nLits1] * pLit1->iVar;				pLit1 = pLit1->pHNext;				nLits1++;			}			else			{                if ( Counter < 2 )                {                    if ( iNode == -1 )                    {                        iNode = pValue2Node[pLit2->iVar];                        Counter = 1;                    }                    else if ( iNode != pValue2Node[pLit2->iVar] )                        Counter = 2;                }				Key  ^= s_Primes[Offset2+nLits2] * pLit2->iVar;				pLit2 = pLit2->pHNext;				nLits2++;			}		}		else if ( pLit1 && !pLit2 )		{            if ( Counter < 2 )            {                if ( iNode == -1 )                {                    iNode = pValue2Node[pLit1->iVar];                    Counter = 1;                }                else if ( iNode != pValue2Node[pLit1->iVar] )                    Counter = 2;            }			Key  ^= s_Primes[Offset1+nLits1] * pLit1->iVar;			pLit1 = pLit1->pHNext;			nLits1++;		}		else if ( !pLit1 && pLit2 )		{            if ( Counter < 2 )            {                if ( iNode == -1 )                {                    iNode = pValue2Node[pLit2->iVar];                    Counter = 1;                }                else if ( iNode != pValue2Node[pLit2->iVar] )                    Counter = 2;            }			Key  ^= s_Primes[Offset2+nLits2] * pLit2->iVar;			pLit2 = pLit2->pHNext;			nLits2++;		}		else			break;	}    // if there is only one MV variable, we should skip it    assert( Counter > 0 );    if ( Counter == 1 )        return 0;    // otherwise, this is a valid cube pair    *pnBase  = nBase;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -