📄 hack.c
字号:
num_deleted_vars = ((PLA->F->sf_size + size_added) - set_ord(compress))/2; /* compute the new cube constants */ num_vars = cube.num_vars - num_deleted_vars + num_added_vars; num_binary_vars = cube.num_binary_vars - num_deleted_vars; new_size = cube.size - num_deleted_vars*2 + size_added; new_part_size = ALLOC(int, num_vars); new_part_size[num_vars-1] = cube.part_size[cube.num_vars-1]; for(var = cube.num_binary_vars; var < cube.num_vars-1; var++) { new_part_size[var-num_deleted_vars] = cube.part_size[var]; } /* re-size the covers, opening room for the new mv variables */ base = cube.first_part[cube.output]; PLA->F = sf_addcol(PLA->F, base, size_added); PLA->D = sf_addcol(PLA->D, base, size_added); PLA->R = sf_addcol(PLA->R, base, size_added); /* compute the values for the new mv variables */ newvar = (cube.num_vars - 1) - num_deleted_vars; for(p1 = PLA->symbolic; p1 != NIL(symbolic_t); p1 = p1->next) { PLA->F = map_symbolic_cover(PLA->F, p1->symbolic_list, base); PLA->D = map_symbolic_cover(PLA->D, p1->symbolic_list, base); PLA->R = map_symbolic_cover(PLA->R, p1->symbolic_list, base); base += 1 << p1->symbolic_list_length; new_part_size[newvar++] = 1 << p1->symbolic_list_length; } /* delete the binary variables which disappear */ PLA->F = sf_compress(PLA->F, compress); PLA->D = sf_compress(PLA->D, compress); PLA->R = sf_compress(PLA->R, compress); symbolic_hack_labels(PLA, PLA->symbolic, compress, new_size, cube.size, size_added); setdown_cube(); FREE(cube.part_size); cube.num_vars = num_vars; cube.num_binary_vars = num_binary_vars; cube.part_size = new_part_size; cube_setup(); set_free(compress);}pcover map_symbolic_cover(T, list, base)pcover T;symbolic_list_t *list;int base;{ pset last, p; foreach_set(T, last, p) { form_bitvector(p, base, 0, list); } return T;}form_bitvector(p, base, value, list)pset p; /* old cube, looking at binary variables */int base; /* where in mv cube the new variable starts */int value; /* current value for this recursion */symbolic_list_t *list; /* current place in the symbolic list */{ if (list == NIL(symbolic_list_t)) { set_insert(p, base + value); } else { switch(GETINPUT(p, list->variable)) { case ZERO: form_bitvector(p, base, value*2, list->next); break; case ONE: form_bitvector(p, base, value*2+1, list->next); break; case TWO: form_bitvector(p, base, value*2, list->next); form_bitvector(p, base, value*2+1, list->next); break; default: fatal("bad cube in form_bitvector"); } }}symbolic_hack_labels(PLA, list, compress, new_size, old_size, size_added)pPLA PLA;symbolic_t *list;pset compress;int new_size, old_size, size_added;{ int i, base; char **oldlabel; symbolic_t *p1; symbolic_label_t *p3; /* hack with the labels */ if ((oldlabel = PLA->label) == NIL(char *)) return; PLA->label = ALLOC(char *, new_size); for(i = 0; i < new_size; i++) { PLA->label[i] = NIL(char); } /* copy the binary variable labels and unchanged mv variable labels */ base = 0; for(i = 0; i < cube.first_part[cube.output]; i++) { if (is_in_set(compress, i)) { PLA->label[base++] = oldlabel[i]; } else { if (oldlabel[i] != NIL(char)) { FREE(oldlabel[i]); } } } /* add the user-defined labels for the symbolic outputs */ for(p1 = list; p1 != NIL(symbolic_t); p1 = p1->next) { p3 = p1->symbolic_label; for(i = 0; i < (1 << p1->symbolic_list_length); i++) { if (p3 == NIL(symbolic_label_t)) { PLA->label[base+i] = ALLOC(char, 10); (void) sprintf(PLA->label[base+i], "X%d", i); } else { PLA->label[base+i] = p3->label; p3 = p3->next; } } base += 1 << p1->symbolic_list_length; } /* copy the labels for the binary outputs which remain */ for(i = cube.first_part[cube.output]; i < old_size; i++) { if (is_in_set(compress, i + size_added)) { PLA->label[base++] = oldlabel[i]; } else { if (oldlabel[i] != NIL(char)) { FREE(oldlabel[i]); } } } FREE(oldlabel);}static pcover fsm_simplify(F)pcover F;{ pcover D, R; D = new_cover(0); R = complement(cube1list(F)); F = espresso(F, D, R); free_cover(D); free_cover(R); return F;}disassemble_fsm(PLA, verbose_mode)pPLA PLA;int verbose_mode;{ int nin, nstates, nout; int before, after, present_state, next_state, i, j; pcube next_state_mask, present_state_mask, state_mask, p, p1, last; pcover go_nowhere, F, tF; /* We make the DISGUSTING assumption that the first 'n' outputs have * been created by .symbolic-output, and represent a one-hot encoding * of the next state. 'n' is the size of the second-to-last multiple- * valued variable (i.e., before the outputs */ if (cube.num_vars - cube.num_binary_vars != 2) { (void) fprintf(stderr, "use .symbolic and .symbolic-output to specify\n"); (void) fprintf(stderr, "the present state and next state field information\n"); fatal("disassemble_pla: need two multiple-valued variables\n"); } nin = cube.num_binary_vars; nstates = cube.part_size[cube.num_binary_vars]; nout = cube.part_size[cube.num_vars - 1]; if (nout < nstates) { (void) fprintf(stderr, "use .symbolic and .symbolic-output to specify\n"); (void) fprintf(stderr, "the present state and next state field information\n"); fatal("disassemble_pla: # outputs < # states\n"); } present_state = cube.first_part[cube.num_binary_vars]; present_state_mask = new_cube(); for(i = 0; i < nstates; i++) { set_insert(present_state_mask, i + present_state); } next_state = cube.first_part[cube.num_binary_vars+1]; next_state_mask = new_cube(); for(i = 0; i < nstates; i++) { set_insert(next_state_mask, i + next_state); } state_mask = set_or(new_cube(), next_state_mask, present_state_mask); F = new_cover(10); /* * check for arcs which go from ANY state to state #i */ for(i = 0; i < nstates; i++) { tF = new_cover(10); foreach_set(PLA->F, last, p) { if (setp_implies(present_state_mask, p)) { /* from any state ! */ if (is_in_set(p, next_state + i)) { tF = sf_addset(tF, p); } } } before = tF->count; if (before > 0) { tF = fsm_simplify(tF); /* don't allow the next state to disappear ... */ foreach_set(tF, last, p) { set_insert(p, next_state + i); } after = tF->count; F = sf_append(F, tF); if (verbose_mode) { (void) printf("# state EVERY to %d, before=%d after=%d\n", i, before, after); } } } /* * some 'arcs' may NOT have a next state -- handle these * we must unravel the present state part */ go_nowhere = new_cover(10); foreach_set(PLA->F, last, p) { if (setp_disjoint(p, next_state_mask)) { /* no next state !! */ go_nowhere = sf_addset(go_nowhere, p); } } before = go_nowhere->count; go_nowhere = unravel_range(go_nowhere, cube.num_binary_vars, cube.num_binary_vars); after = go_nowhere->count; F = sf_append(F, go_nowhere); if (verbose_mode) { (void) printf("# state ANY to NOWHERE, before=%d after=%d\n", before, after); } /* * minimize cover for all arcs from state #i to state #j */ for(i = 0; i < nstates; i++) { for(j = 0; j < nstates; j++) { tF = new_cover(10); foreach_set(PLA->F, last, p) { /* not EVERY state */ if (! setp_implies(present_state_mask, p)) { if (is_in_set(p, present_state + i)) { if (is_in_set(p, next_state + j)) { p1 = set_save(p); (void) set_diff(p1, p1, state_mask); set_insert(p1, present_state + i); set_insert(p1, next_state + j); tF = sf_addset(tF, p1); set_free(p1); } } } } before = tF->count; if (before > 0) { tF = fsm_simplify(tF); /* don't allow the next state to disappear ... */ foreach_set(tF, last, p) { set_insert(p, next_state + j); } after = tF->count; F = sf_append(F, tF); if (verbose_mode) { (void) printf("# state %d to %d, before=%d after=%d\n", i, j, before, after); } } } } free_cube(state_mask); free_cube(present_state_mask); free_cube(next_state_mask); free_cover(PLA->F); PLA->F = F; free_cover(PLA->D); PLA->D = new_cover(0); setdown_cube(); FREE(cube.part_size); cube.num_binary_vars = nin; cube.num_vars = nin + 3; cube.part_size = ALLOC(int, cube.num_vars); cube.part_size[cube.num_binary_vars] = nstates; cube.part_size[cube.num_binary_vars+1] = nstates; cube.part_size[cube.num_binary_vars+2] = nout - nstates; cube_setup(); foreach_set(PLA->F, last, p) { kiss_print_cube(stdout, PLA, p, "~1"); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -