⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cuddharwell.c

📁 主要进行大规模的电路综合
💻 C
字号:
/**CFile***********************************************************************  FileName    [cuddHarwell.c]  PackageName [cudd]  Synopsis    [Function to read a matrix in Harwell format.]  Description [External procedures included in this module:		<ul>		<li> Cudd_addHarwell()		</ul>	]  Author      [Fabio Somenzi]  Copyright   [This file was created at the University of Colorado at  Boulder.  The University of Colorado at Boulder makes no warranty  about the suitability of this software for any purpose.  It is  presented on an AS IS basis.]******************************************************************************/#include "util.h"#include "cuddInt.h"/*---------------------------------------------------------------------------*//* Constant declarations                                                     *//*---------------------------------------------------------------------------*//*---------------------------------------------------------------------------*//* Stucture declarations                                                     *//*---------------------------------------------------------------------------*//*---------------------------------------------------------------------------*//* Type declarations                                                         *//*---------------------------------------------------------------------------*//*---------------------------------------------------------------------------*//* Variable declarations                                                     *//*---------------------------------------------------------------------------*/#ifndef lintstatic char rcsid[] DD_UNUSED = "$Id: cuddHarwell.c,v 1.1.1.1 2003/02/24 22:23:52 wjiang Exp $";#endif/*---------------------------------------------------------------------------*//* Macro declarations                                                        *//*---------------------------------------------------------------------------*//**AutomaticStart*************************************************************//*---------------------------------------------------------------------------*//* Static function prototypes                                                *//*---------------------------------------------------------------------------*//**AutomaticEnd***************************************************************//*---------------------------------------------------------------------------*//* Definition of exported functions                                          *//*---------------------------------------------------------------------------*//**Function********************************************************************  Synopsis    [Reads in a matrix in the format of the Harwell-Boeing  benchmark suite.]  Description [Reads in a matrix in the format of the Harwell-Boeing  benchmark suite. The variables are ordered as follows:  <blockquote>  x\[0\] y\[0\] x\[1\] y\[1\] ...  </blockquote>  0 is the most significant bit.  On input, nx and ny hold the numbers  of row and column variables already in existence. On output, they  hold the numbers of row and column variables actually used by the  matrix.  m and n are set to the numbers of rows and columns of the  matrix.  Their values on input are immaterial.  Returns 1 on  success; 0 otherwise. The ADD for the sparse matrix is returned in  E, and its reference count is > 0.]  SideEffects [None]  SeeAlso     [Cudd_addRead Cudd_bddRead]******************************************************************************/intCudd_addHarwell(  FILE * fp /* pointer to the input file */,  DdManager * dd /* DD manager */,  DdNode ** E /* characteristic function of the graph */,  DdNode *** x /* array of row variables */,  DdNode *** y /* array of column variables */,  DdNode *** xn /* array of complemented row variables */,  DdNode *** yn_ /* array of complemented column variables */,  int * nx /* number or row variables */,  int * ny /* number or column variables */,  int * m /* number of rows */,  int * n /* number of columns */,  int  bx /* first index of row variables */,  int  sx /* step of row variables */,  int  by /* first index of column variables */,  int  sy /* step of column variables */,  int  pr /* verbosity level */){    DdNode *one, *zero;    DdNode *w;    DdNode *cubex, *cubey, *minterm1;    int u, v, err, i, j, nv;    double val;    DdNode **lx, **ly, **lxn, **lyn;	/* local copies of x, y, xn, yn_ */    int lnx, lny;			/* local copies of nx and ny */    char title[73], key[9], mxtype[4], rhstyp[4];    int totcrd, ptrcrd, indcrd, valcrd, rhscrd,        nrow, ncol, nnzero, neltvl,	nrhs, nrhsix;    int *colptr, *rowind;#if 0    int nguess, nexact;    int	*rhsptr, *rhsind;#endif    if (*nx < 0 || *ny < 0) return(0);    one = DD_ONE(dd);    zero = DD_ZERO(dd);    /* Read the header */    err = fscanf(fp, "%72c %8c", title, key);    if (err == EOF) {	return(0);    } else if (err != 2) {        return(0);    }    title[72] = (char) 0;    key[8] = (char) 0;    err = fscanf(fp, "%d %d %d %d %d", &totcrd, &ptrcrd, &indcrd,    &valcrd, &rhscrd);    if (err == EOF) {	return(0);    } else if (err != 5) {        return(0);    }    err = fscanf(fp, "%3s %d %d %d %d", mxtype, &nrow, &ncol,    &nnzero, &neltvl);    if (err == EOF) {	return(0);    } else if (err != 5) {        return(0);    }    /* Skip FORTRAN formats */    if (rhscrd == 0) {	err = fscanf(fp, "%*s %*s %*s \n");    } else {	err = fscanf(fp, "%*s %*s %*s %*s \n");    }    if (err == EOF) {	return(0);    } else if (err != 0) {        return(0);    }    /* Print out some stuff if requested to be verbose */    if (pr>0) {	(void) fprintf(dd->out,"%s: type %s, %d rows, %d columns, %d entries\n", key,	mxtype, nrow, ncol, nnzero);	if (pr>1) (void) fprintf(dd->out,"%s\n", title);    }    /* Check matrix type */    if (mxtype[0] != 'R' || mxtype[1] != 'U' || mxtype[2] != 'A') {	(void) fprintf(dd->err,"%s: Illegal matrix type: %s\n",		       key, mxtype);	return(0);    }    if (neltvl != 0) return(0);    /* Read optional 5-th line */    if (rhscrd != 0) {	err = fscanf(fp, "%3c %d %d", rhstyp, &nrhs, &nrhsix);	if (err == EOF) {	    return(0);	} else if (err != 3) {	    return(0);	}	rhstyp[3] = (char) 0;	if (rhstyp[0] != 'F') {	    (void) fprintf(dd->err,	    "%s: Sparse right-hand side not yet supported\n", key);	    return(0);	}	if (pr>0) (void) fprintf(dd->out,"%d right-hand side(s)\n", nrhs);    } else {	nrhs = 0;    }    /* Compute the number of variables */    /* row and column numbers start from 0 */    u = nrow - 1;    for (i=0; u > 0; i++) {	u >>= 1;    }    lnx = i;    if (nrhs == 0) {	v = ncol - 1;    } else {	v = 2* (ddMax(ncol, nrhs) - 1);    }    for (i=0; v > 0; i++) {	v >>= 1;    }    lny = i;    /* Allocate or reallocate arrays for variables as needed */    if (*nx == 0) {	if (lnx > 0) {	    *x = lx = ALLOC(DdNode *,lnx);	    if (lx == NULL) {		dd->errorCode = CUDD_MEMORY_OUT;		return(0);	    }	    *xn = lxn =  ALLOC(DdNode *,lnx);	    if (lxn == NULL) {		dd->errorCode = CUDD_MEMORY_OUT;		return(0);	    }	} else {	    *x = *xn = NULL;	}    } else if (lnx > *nx) {	*x = lx = REALLOC(DdNode *, *x, lnx);	if (lx == NULL) {	    dd->errorCode = CUDD_MEMORY_OUT;	    return(0);	}	*xn = lxn =  REALLOC(DdNode *, *xn, lnx);	if (lxn == NULL) {	    dd->errorCode = CUDD_MEMORY_OUT;	    return(0);	}    } else {	lx = *x;	lxn = *xn;    }    if (*ny == 0) {	if (lny >0) {	    *y = ly = ALLOC(DdNode *,lny);	    if (ly == NULL) {		dd->errorCode = CUDD_MEMORY_OUT;		return(0);	    }	    *yn_ = lyn = ALLOC(DdNode *,lny);	    if (lyn == NULL) {		dd->errorCode = CUDD_MEMORY_OUT;		return(0);	    }	} else {	    *y = *yn_ = NULL;	}    } else if (lny > *ny) {	*y = ly = REALLOC(DdNode *, *y, lny);	if (ly == NULL) {	    dd->errorCode = CUDD_MEMORY_OUT;	    return(0);	}	*yn_ = lyn = REALLOC(DdNode *, *yn_, lny);	if (lyn == NULL) {	    dd->errorCode = CUDD_MEMORY_OUT;	    return(0);	}    } else {	ly = *y;	lyn = *yn_;    }    /* Create new variables as needed */    for (i= *nx,nv=bx+(*nx)*sx; i < lnx; i++,nv+=sx) {	do {	    dd->reordered = 0;	    lx[i] = cuddUniqueInter(dd, nv, one, zero);	} while (dd->reordered == 1);	if (lx[i] == NULL) return(0);        cuddRef(lx[i]);	do {	    dd->reordered = 0;	    lxn[i] = cuddUniqueInter(dd, nv, zero, one);	} while (dd->reordered == 1);	if (lxn[i] == NULL) return(0);        cuddRef(lxn[i]);    }    for (i= *ny,nv=by+(*ny)*sy; i < lny; i++,nv+=sy) {	do {	    dd->reordered = 0;	    ly[i] = cuddUniqueInter(dd, nv, one, zero);	} while (dd->reordered == 1);	if (ly[i] == NULL) return(0);	cuddRef(ly[i]);	do {	    dd->reordered = 0;	    lyn[i] = cuddUniqueInter(dd, nv, zero, one);	} while (dd->reordered == 1);	if (lyn[i] == NULL) return(0);	cuddRef(lyn[i]);    }    /* Update matrix parameters */    *nx = lnx;    *ny = lny;    *m = nrow;    if (nrhs == 0) {	*n = ncol;    } else {	*n = (1 << (lny - 1)) + nrhs;    }        /* Read structure data */    colptr = ALLOC(int, ncol+1);    if (colptr == NULL) {	dd->errorCode = CUDD_MEMORY_OUT;	return(0);    }    rowind = ALLOC(int, nnzero);    if (rowind == NULL) {	dd->errorCode = CUDD_MEMORY_OUT;	return(0);    }    for (i=0; i<ncol+1; i++) {	err = fscanf(fp, " %d ", &u);	if (err == EOF){ 	    FREE(colptr);	    FREE(rowind);	    return(0);	} else if (err != 1) {	    FREE(colptr);	    FREE(rowind);	    return(0);	}	colptr[i] = u - 1;    }    if (colptr[0] != 0) {	(void) fprintf(dd->err,"%s: Unexpected colptr[0] (%d)\n",		       key,colptr[0]);	FREE(colptr);	FREE(rowind);	return(0);    }    for (i=0; i<nnzero; i++) {	err = fscanf(fp, " %d ", &u);	if (err == EOF){ 	    FREE(colptr);	    FREE(rowind);	    return(0);	} else if (err != 1) {	    FREE(colptr);	    FREE(rowind);	    return(0);	}	rowind[i] = u - 1;    }    *E = zero; cuddRef(*E);    for (j=0; j<ncol; j++) {	v = j;	cubey = one; cuddRef(cubey);	for (nv = lny - 1; nv>=0; nv--) {	    if (v & 1) {		w = Cudd_addApply(dd, Cudd_addTimes, cubey, ly[nv]);	    } else {		w = Cudd_addApply(dd, Cudd_addTimes, cubey, lyn[nv]);	    }	    if (w == NULL) {		Cudd_RecursiveDeref(dd, cubey);		FREE(colptr);		FREE(rowind);		return(0);	    }	    cuddRef(w);	    Cudd_RecursiveDeref(dd, cubey);	    cubey = w;	    v >>= 1;	}	for (i=colptr[j]; i<colptr[j+1]; i++) {	    u = rowind[i];	    err = fscanf(fp, " %lf ", &val);	    if (err == EOF || err != 1){ 		Cudd_RecursiveDeref(dd, cubey);		FREE(colptr);		FREE(rowind);		return(0);	    }	    /* Create new Constant node if necessary */	    cubex = cuddUniqueConst(dd, (CUDD_VALUE_TYPE) val);	    if (cubex == NULL) {		Cudd_RecursiveDeref(dd, cubey);		FREE(colptr);		FREE(rowind);		return(0);	    }	    cuddRef(cubex);	    for (nv = lnx - 1; nv>=0; nv--) {		if (u & 1) {		    w = Cudd_addApply(dd, Cudd_addTimes, cubex, lx[nv]);		} else { 		    w = Cudd_addApply(dd, Cudd_addTimes, cubex, lxn[nv]);		}		if (w == NULL) {		    Cudd_RecursiveDeref(dd, cubey);		    Cudd_RecursiveDeref(dd, cubex);		    FREE(colptr);		    FREE(rowind);		    return(0);		}		cuddRef(w);		Cudd_RecursiveDeref(dd, cubex);		cubex = w;		u >>= 1;	    }	    minterm1 = Cudd_addApply(dd, Cudd_addTimes, cubey, cubex);	    if (minterm1 == NULL) {		Cudd_RecursiveDeref(dd, cubey);		Cudd_RecursiveDeref(dd, cubex);		FREE(colptr);		FREE(rowind);		return(0);	    }	    cuddRef(minterm1);	    Cudd_RecursiveDeref(dd, cubex);	    w = Cudd_addApply(dd, Cudd_addPlus, *E, minterm1);	    if (w == NULL) {		Cudd_RecursiveDeref(dd, cubey);		FREE(colptr);		FREE(rowind);		return(0);	    }	    cuddRef(w);	    Cudd_RecursiveDeref(dd, minterm1);	    Cudd_RecursiveDeref(dd, *E);	    *E = w;	}	Cudd_RecursiveDeref(dd, cubey);    }    FREE(colptr);    FREE(rowind);    /* Read right-hand sides */    for (j=0; j<nrhs; j++) {	v = j + (1<< (lny-1));	cubey = one; cuddRef(cubey);	for (nv = lny - 1; nv>=0; nv--) {	    if (v & 1) {		w = Cudd_addApply(dd, Cudd_addTimes, cubey, ly[nv]);	    } else {		w = Cudd_addApply(dd, Cudd_addTimes, cubey, lyn[nv]);	    }	    if (w == NULL) {		Cudd_RecursiveDeref(dd, cubey);		return(0);	    }	    cuddRef(w);	    Cudd_RecursiveDeref(dd, cubey);	    cubey = w;	    v >>= 1;	}	for (i=0; i<nrow; i++) {	    u = i;	    err = fscanf(fp, " %lf ", &val);	    if (err == EOF || err != 1){ 		Cudd_RecursiveDeref(dd, cubey);		return(0);	    }	    /* Create new Constant node if necessary */	    if (val == (double) 0.0) continue;	    cubex = cuddUniqueConst(dd, (CUDD_VALUE_TYPE) val);	    if (cubex == NULL) {		Cudd_RecursiveDeref(dd, cubey);		return(0);	    }	    cuddRef(cubex);	    for (nv = lnx - 1; nv>=0; nv--) {		if (u & 1) {		   w = Cudd_addApply(dd, Cudd_addTimes, cubex, lx[nv]);		} else { 		    w = Cudd_addApply(dd, Cudd_addTimes, cubex, lxn[nv]);		}		if (w == NULL) {		    Cudd_RecursiveDeref(dd, cubey);		    Cudd_RecursiveDeref(dd, cubex);		    return(0);		}		cuddRef(w);		Cudd_RecursiveDeref(dd, cubex);		cubex = w;		u >>= 1;	    }	    minterm1 = Cudd_addApply(dd, Cudd_addTimes, cubey, cubex);	    if (minterm1 == NULL) {		Cudd_RecursiveDeref(dd, cubey);		Cudd_RecursiveDeref(dd, cubex);		return(0);	    }	    cuddRef(minterm1);	    Cudd_RecursiveDeref(dd, cubex);	    w = Cudd_addApply(dd, Cudd_addPlus, *E, minterm1);	    if (w == NULL) {		Cudd_RecursiveDeref(dd, cubey);		return(0);	    }	    cuddRef(w);	    Cudd_RecursiveDeref(dd, minterm1);	    Cudd_RecursiveDeref(dd, *E);	    *E = w;	}	Cudd_RecursiveDeref(dd, cubey);    }    return(1);} /* end of Cudd_addHarwell *//*---------------------------------------------------------------------------*//* Definition of internal functions                                          *//*---------------------------------------------------------------------------*//*---------------------------------------------------------------------------*//* Definition of static functions                                            *//*---------------------------------------------------------------------------*/

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -