⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cuddsat.c

📁 主要进行大规模的电路综合
💻 C
📖 第 1 页 / 共 3 页
字号:
/**CFile***********************************************************************  FileName    [cuddSat.c]  PackageName [cudd]  Synopsis    [Functions for the solution of satisfiability related  problems.]  Description [External procedures included in this file:		<ul>		<li> Cudd_Eval()		<li> Cudd_ShortestPath()		<li> Cudd_LargestCube()		<li> Cudd_ShortestLength()		<li> Cudd_Decreasing()		<li> Cudd_Increasing()		<li> Cudd_EquivDC()		<li> Cudd_bddLeqUnless()		<li> Cudd_EqualSupNorm()		<li> Cudd_bddMakePrime()		</ul>	Internal procedures included in this module:	        <ul>		<li> cuddBddMakePrime()		</ul>	Static procedures included in this module:		<ul>		<li> freePathPair()		<li> getShortest()		<li> getPath()		<li> getLargest()		<li> getCube()		</ul>]  Author      [Seh-Woong Jeong, Fabio Somenzi]  Copyright   [This file was created at the University of Colorado at  Boulder.  The University of Colorado at Boulder makes no warranty  about the suitability of this software for any purpose.  It is  presented on an AS IS basis.]******************************************************************************/#include "util.h"#include "cuddInt.h"/*---------------------------------------------------------------------------*//* Constant declarations                                                     *//*---------------------------------------------------------------------------*/#define	DD_BIGGY	1000000/*---------------------------------------------------------------------------*//* Stucture declarations                                                     *//*---------------------------------------------------------------------------*//*---------------------------------------------------------------------------*//* Type declarations                                                         *//*---------------------------------------------------------------------------*/typedef struct cuddPathPair {    int	pos;    int	neg;} cuddPathPair;/*---------------------------------------------------------------------------*//* Variable declarations                                                     *//*---------------------------------------------------------------------------*/#ifndef lintstatic char rcsid[] DD_UNUSED = "$Id: cuddSat.c,v 1.1.1.1 2003/02/24 22:23:53 wjiang Exp $";#endifstatic	DdNode	*one, *zero;/*---------------------------------------------------------------------------*//* Macro declarations                                                        *//*---------------------------------------------------------------------------*/#define WEIGHT(weight, col)	((weight) == NULL ? 1 : weight[col])/**AutomaticStart*************************************************************//*---------------------------------------------------------------------------*//* Static function prototypes                                                *//*---------------------------------------------------------------------------*/static enum st_retval freePathPair ARGS((char *key, char *value, char *arg));static cuddPathPair getShortest ARGS((DdNode *root, int *cost, int *support, st_table *visited));static DdNode * getPath ARGS((DdManager *manager, st_table *visited, DdNode *f, int *weight, int cost));static cuddPathPair getLargest ARGS((DdNode *root, st_table *visited));static DdNode * getCube ARGS((DdManager *manager, st_table *visited, DdNode *f, int cost));/**AutomaticEnd***************************************************************//*---------------------------------------------------------------------------*//* Definition of exported functions                                          *//*---------------------------------------------------------------------------*//**Function********************************************************************  Synopsis    [Returns the value of a DD for a given variable assignment.]  Description [Finds the value of a DD for a given variable  assignment. The variable assignment is passed in an array of int's,  that should specify a zero or a one for each variable in the support  of the function. Returns a pointer to a constant node. No new nodes  are produced.]  SideEffects [None]  SeeAlso     [Cudd_bddLeq Cudd_addEvalConst]******************************************************************************/DdNode *Cudd_Eval(  DdManager * dd,  DdNode * f,  int * inputs){    int comple;    DdNode *ptr;    comple = Cudd_IsComplement(f);    ptr = Cudd_Regular(f);    while (!cuddIsConstant(ptr)) {	if (inputs[ptr->index] == 1) {	    ptr = cuddT(ptr);	} else {	    comple ^= Cudd_IsComplement(cuddE(ptr));	    ptr = Cudd_Regular(cuddE(ptr));	}    }    return(Cudd_NotCond(ptr,comple));} /* end of Cudd_Eval *//**Function********************************************************************  Synopsis    [Finds a shortest path in a DD.]  Description [Finds a shortest path in a DD. f is the DD we want to  get the shortest path for; weight\[i\] is the weight of the THEN arc  coming from the node whose index is i. If weight is NULL, then unit  weights are assumed for all THEN arcs. All ELSE arcs have 0 weight.  If non-NULL, both weight and support should point to arrays with at  least as many entries as there are variables in the manager.  Returns the shortest path as the BDD of a cube.]  SideEffects [support contains on return the true support of f.  If support is NULL on entry, then Cudd_ShortestPath does not compute  the true support info. length contains the length of the path.]  SeeAlso     [Cudd_ShortestLength Cudd_LargestCube]******************************************************************************/DdNode *Cudd_ShortestPath(  DdManager * manager,  DdNode * f,  int * weight,  int * support,  int * length){    register 	DdNode	*F;    st_table	*visited;    DdNode	*sol;    cuddPathPair *rootPair;    int		complement, cost;    int		i;    one = DD_ONE(manager);    zero = DD_ZERO(manager);    /* Initialize support. */    if (support) {	for (i = 0; i < manager->size; i++) {	    support[i] = 0;	}    }    if (f == Cudd_Not(one) || f == zero) {	*length = DD_BIGGY;	return(Cudd_Not(one));    }    /* From this point on, a path exists. */    /* Initialize visited table. */    visited = st_init_table(st_ptrcmp, st_ptrhash);    /* Now get the length of the shortest path(s) from f to 1. */    (void) getShortest(f, weight, support, visited);    complement = Cudd_IsComplement(f);    F = Cudd_Regular(f);    st_lookup(visited, (char *)F, (char **)&rootPair);        if (complement) {	cost = rootPair->neg;    } else {	cost = rootPair->pos;    }    /* Recover an actual shortest path. */    do {	manager->reordered = 0;	sol = getPath(manager,visited,f,weight,cost);    } while (manager->reordered == 1);    st_foreach(visited, freePathPair, NULL);    st_free_table(visited);    *length = cost;    return(sol);} /* end of Cudd_ShortestPath *//**Function********************************************************************  Synopsis    [Finds a largest cube in a DD.]  Description [Finds a largest cube in a DD. f is the DD we want to  get the largest cube for. The problem is translated into the one of  finding a shortest path in f, when both THEN and ELSE arcs are assumed to  have unit length. This yields a largest cube in the disjoint cover  corresponding to the DD. Therefore, it is not necessarily the largest  implicant of f.  Returns the largest cube as a BDD.]  SideEffects [The number of literals of the cube is returned in length.]  SeeAlso     [Cudd_ShortestPath]******************************************************************************/DdNode *Cudd_LargestCube(  DdManager * manager,  DdNode * f,  int * length){    register 	DdNode	*F;    st_table	*visited;    DdNode	*sol;    cuddPathPair *rootPair;    int		complement, cost;    one = DD_ONE(manager);    zero = DD_ZERO(manager);    if (f == Cudd_Not(one) || f == zero) {	*length = DD_BIGGY;	return(Cudd_Not(one));    }    /* From this point on, a path exists. */    /* Initialize visited table. */    visited = st_init_table(st_ptrcmp, st_ptrhash);    /* Now get the length of the shortest path(s) from f to 1. */    (void) getLargest(f, visited);    complement = Cudd_IsComplement(f);    F = Cudd_Regular(f);    st_lookup(visited, (char *)F, (char **)&rootPair);        if (complement) {	cost = rootPair->neg;    } else {	cost = rootPair->pos;    }    /* Recover an actual shortest path. */    do {	manager->reordered = 0;	sol = getCube(manager,visited,f,cost);    } while (manager->reordered == 1);    st_foreach(visited, freePathPair, NULL);    st_free_table(visited);    *length = cost;    return(sol);} /* end of Cudd_LargestCube *//**Function********************************************************************  Synopsis    [Find the length of the shortest path(s) in a DD.]  Description [Find the length of the shortest path(s) in a DD. f is  the DD we want to get the shortest path for; weight\[i\] is the  weight of the THEN edge coming from the node whose index is i. All  ELSE edges have 0 weight. Returns the length of the shortest  path(s) if successful; CUDD_OUT_OF_MEM otherwise.]  SideEffects [None]  SeeAlso     [Cudd_ShortestPath]******************************************************************************/intCudd_ShortestLength(  DdManager * manager,  DdNode * f,  int * weight){    register 	DdNode	*F;    st_table	*visited;    cuddPathPair *my_pair;    int		complement, cost;    one = DD_ONE(manager);    zero = DD_ZERO(manager);    if (f == Cudd_Not(one) || f == zero) {	return(DD_BIGGY);    }    /* From this point on, a path exists. */    /* Initialize visited table and support. */    visited = st_init_table(st_ptrcmp, st_ptrhash);    /* Now get the length of the shortest path(s) from f to 1. */    (void) getShortest(f, weight, NULL, visited);    complement = Cudd_IsComplement(f);    F = Cudd_Regular(f);    st_lookup(visited, (char *)F, (char **)&my_pair);        if (complement) {	cost = my_pair->neg;    } else {	cost = my_pair->pos;    }    st_foreach(visited, freePathPair, NULL);    st_free_table(visited);    return(cost);} /* end of Cudd_ShortestLength *//**Function********************************************************************  Synopsis    [Determines whether a BDD is negative unate in a  variable.]  Description [Determines whether the function represented by BDD f is  negative unate (monotonic decreasing) in variable i. Returns the  constant one is f is unate and the (logical) constant zero if it is not.  This function does not generate any new nodes.]  SideEffects [None]  SeeAlso     [Cudd_Increasing]******************************************************************************/DdNode *Cudd_Decreasing(  DdManager * dd,  DdNode * f,  int  i){    unsigned int topf, level;    DdNode *F, *fv, *fvn, *res;    DdNode *(*cacheOp)(DdManager *, DdNode *, DdNode *);    statLine(dd);#ifdef DD_DEBUG    assert(0 <= i && i < dd->size);#endif    F = Cudd_Regular(f);    topf = cuddI(dd,F->index);    /* Check terminal case. If topf > i, f does not depend on var.    ** Therefore, f is unate in i.    */    level = (unsigned) dd->perm[i];    if (topf > level) {	return(DD_ONE(dd));    }    /* From now on, f is not constant. */    /* Check cache. */    cacheOp = (DdNode *(*)(DdManager *, DdNode *, DdNode *)) Cudd_Decreasing;    res = cuddCacheLookup2(dd,cacheOp,f,dd->vars[i]);    if (res != NULL) {	return(res);    }    /* Compute cofactors. */    fv = cuddT(F); fvn = cuddE(F);    if (F != f) {	fv = Cudd_Not(fv);	fvn = Cudd_Not(fvn);    }    if (topf == (unsigned) level) {	/* Special case: if fv is regular, fv(1,...,1) = 1;	** If in addition fvn is complemented, fvn(1,...,1) = 0.	** But then f(1,1,...,1) > f(0,1,...,1). Hence f is not	** monotonic decreasing in i.	*/	if (!Cudd_IsComplement(fv) && Cudd_IsComplement(fvn)) {	    return(Cudd_Not(DD_ONE(dd)));	}	res = Cudd_bddLeq(dd,fv,fvn) ? DD_ONE(dd) : Cudd_Not(DD_ONE(dd));    } else {	res = Cudd_Decreasing(dd,fv,i);	if (res == DD_ONE(dd)) {	    res = Cudd_Decreasing(dd,fvn,i);	}    }    cuddCacheInsert2(dd,cacheOp,f,dd->vars[i],res);    return(res);} /* end of Cudd_Decreasing *//**Function********************************************************************

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -