⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 红黑树插入程序.cpp

📁 这是两个红黑树程序
💻 CPP
字号:
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <iostream.h>
#define  LENGTH 100
static int flag = 1;       //是否出现红--红冲突的标志
static int flag2 = 0;       //是计数虚拟节点的
static int height=0;         //  记录黑色高度
static flag3 = 1;
typedef int KEY;
 
enum NODECOLOR
{
    BLACK = 0,
    RED = 1
};

typedef struct RBTree
{
    struct RBTree *parent;
    struct RBTree *left, *right;
    KEY key;
    NODECOLOR color;
}RBTree, *PRBTree;

PRBTree RB_InsertNode(PRBTree root, KEY key);          
PRBTree RB_InsertNode_Fixup(PRBTree root, PRBTree z);

PRBTree RB_DeleteNode(PRBTree root, KEY key);
PRBTree RB_DeleteNode_Fixup(PRBTree root, PRBTree z);

PRBTree Find_Node(PRBTree root, KEY key);
void Left_Rotate(PRBTree A, PRBTree& root);
void Right_Rotate(PRBTree A, PRBTree& root);
void Mid_Visit(PRBTree T);
void Mid_DeleteTree(PRBTree T);
void Print_Node(PRBTree node);


void Left_Rotate(PRBTree A, PRBTree& root)
{ 
    PRBTree B;
    B = A->right;

    if (NULL == B)
        return;

    A->right = B->left;
    if (NULL != B->left)
        B->left->parent = A;
    B->parent = A->parent;
    // 这样三个判断连在一起避免了A->parent = NULL的情况

    if (A == root)
    {
        root = B;
    }
    else if (A == A->parent->left)
    {
        A->parent->left = B;
    }
    else
    {
        A->parent->right = B;
    }
    B->left = A;
    A->parent = B;
}


void Right_Rotate(PRBTree A, PRBTree& root)
{
    PRBTree B;
    B = A->left;

    if (NULL == B)
        return;

    A->left = B->right;
    if (NULL != B->right)
        B->right->parent = A;
    B->parent = A->parent;
    // 这样三个判断连在一起避免了A->parent = NULL的情况

    if (A == root)
    {
        root = B;
    }
    else if (A == A->parent->left)
    {
        A->parent->left = B;
    }
    else
    {
        A->parent->right = B;
    }
    A->parent = B;
    B->right = A;
}

/**//*-----------------------------------------------------------
  | 函数作用:查找key值对应的结点指针
  | 输入参数:根节点root,待查找关键值key
  | 返回参数:如果找到返回结点指针,否则返回NULL
  -------------------------------------------------------------*/
PRBTree Find_Node(PRBTree root, KEY key)
{
    PRBTree x;

    // 找到key所在的node

    x = root;
    do
    {
        if (key == x->key)
            break;
        if (key < x->key)
        {
            if (NULL != x->left)
                x = x->left;
            else
                break;
        }
        else
        {
            if (NULL != x->right)
                x = x->right;
            else
                break;
        }
    } while (NULL != x);

    return x;
}

/**//*-----------------------------------------------------------
  | 函数作用:在树中插入key值
  | 输入参数:根节点root,待插入结点的关键值key
  | 返回参数:根节点root
  -------------------------------------------------------------*/
PRBTree RB_InsertNode(PRBTree root, KEY key)
{
    PRBTree x, y;

    PRBTree z;
    if (NULL == (z = (PRBTree)malloc(sizeof(RBTree))))
    {
        printf("Memory alloc error\n");
        return NULL;
    }
    z->key = key;

    // 得到z的父节点

    x = root, y = NULL;
    while (NULL != x)
    {
        y = x;
        if (z->key < x->key)
        {
            if (NULL != x->left)
            {
                x = x->left;
            }
            else
            {
                break;
            }
        }
        else
        {
            if (NULL != x->right)
            {
                x = x->right;
            }
            else
            {
                break;
            }
        }
    }

    // 把z放到合适的位置

    z->parent = y;
    if (NULL == y)
    {
        root = z;
    }
    else
    {
        if (z->key < y->key)
            y->left = z;
        else
            y->right = z;
    }
    // 设置z的左右子树为空并且颜色是red,注意新插入的节点颜色都是red

    z->left = z->right = NULL;
    z->color = RED;

    // 对红黑树进行修正

    return RB_InsertNode_Fixup(root, z);
}

/**//*-----------------------------------------------------------
  | 函数作用:对插入key值之后的树进行修正
  | 输入参数:根节点root,插入的结点z
  | 返回参数:根节点root
  -------------------------------------------------------------*/
PRBTree RB_InsertNode_Fixup(PRBTree root, PRBTree z)
{
    PRBTree y;
    while (root != z && RED == z->parent->color) // 当z不是根同时父节点的颜色是red

    {
        if (z->parent == z->parent->parent->left) // 父节点是祖父节点的左子树

        {
            y = z->parent->parent->right; // y为z的伯父节点

            if (NULL != y && RED == y->color) // 伯父节点存在且颜色是red

            {
                z->parent->color = BLACK; // 更改z的父节点颜色是B

                y->color = BLACK; // 更改z的伯父节点颜色是B

                z->parent->parent->color = RED; // 更改z的祖父节点颜色是B

                z = z->parent->parent; // 更新z为它的祖父节点

            }
            else // 无伯父节点或者伯父节点颜色是b

            {
                if (z == z->parent->right) // 如果新节点是父节点的右子树

                {
                    z = z->parent;
                    Left_Rotate(z, root);
                }
                z->parent->color = BLACK; // 改变父节点颜色是B

                z->parent->parent->color = RED; // 改变祖父节点颜色是R

                Right_Rotate(z->parent->parent, root);
            }
        }
        else // 父节点为祖父节点的右子树

        {
            y = z->parent->parent->left; // y为z的伯父节点

            if (NULL != y && RED == y->color) // 如果y的颜色是red

            {
                z->parent->color = BLACK; // 更改父节点的颜色为B

                y->color = BLACK; // 更改伯父节点的颜色是B

                z->parent->parent->color = RED; // 更改祖父节点颜色是R

                z = z->parent->parent; // 更改z指向祖父节点

            } 
            else // y不存在或者颜色是B

            {
                if (z == z->parent->left) // 如果是父节点的左子树

                {
                    z = z->parent;
                    Right_Rotate(z, root);
                }
                z->parent->color = BLACK; // 改变父节点的颜色是B

                z->parent->parent->color = RED; // 改变祖父节点的颜色是RED

                Left_Rotate(z->parent->parent, root);
            }
        }
    } // while(RED == z->parent->color)


    // 根节点的颜色始终都是B

    root->color = BLACK;

    return root;
}


void Print_Node(PRBTree node)
{
    char* color[] = {"BLACK", "RED"};
    printf("Key = %d,\tcolor = %s", node->key, color[node->color]);
    if (NULL != node->parent)
        printf(",\tparent = %d", node->parent->key);
    if (NULL != node->left)
        printf(",\tleft = %d", node->left->key);
    if (NULL != node->right)
        printf(",\tright = %d", node->right->key);
    printf("\n");
}
  

void BlackHeight(PRBTree T)
{    PRBTree  p =T;  
      int temp;
      flag2++;

      while(p->parent!=NULL)
	  {  p=p->parent;
       if(p->color==BLACK)
         temp++;
	  }

	  if(flag==1)height= temp;
	  if(temp!=height) flag3=0;
}  



void Mid_Visit(PRBTree T)
{   if(T->right==NULL&&T->left==NULL)
          BlackHeight(T);
    if (NULL != T)
    {
        if (NULL != T->left)
		{   if(T->color==RED&&T->left->color==RED)
		    flag = 0;
		Mid_Visit(T->left);} 
        Print_Node(T);
        if (NULL != T->right)
		{if(T->color==RED&&T->right->color==RED)
		    flag = 0;
		Mid_Visit(T->right);}
    }
}


void Create_New_Array(int array[], int length)
{
    for (int i = 0; i < length; i++)
    {
        array[i] = rand() % 1000;
    }
}

int main(int argc, char *argv[])
{
    int array[LENGTH];
    srand(time(NULL));
    Create_New_Array(array, LENGTH);
    PRBTree root = NULL;
    int i;
    for (i = 0; i <LENGTH; i++)
    {
        root = RB_InsertNode(root, array[i]);
    }
   Mid_Visit(root);
   if(flag==0)
	   cout<<"出现了红--红冲突"<<endl; //检验的三条1:是否有红-红冲突2:是否中序遍历是由小到大3:所有虚拟节点的黑色高度是;一样的
   else {cout<<"没有出现红-红冲突"<<endl;
         if(flag3==0)
			   cout<<"黑色高度不一样,不是红黑树"<<endl;
		        
		 else cout<<"是红黑树"<<endl;  
   } 


   return 0;
}
 

  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -