📄 vfs.txt
字号:
struct inode_operations { struct file_operations * default_file_ops; int (*create) (struct inode *,struct dentry *,int); int (*lookup) (struct inode *,struct dentry *); int (*link) (struct dentry *,struct inode *,struct dentry *); int (*unlink) (struct inode *,struct dentry *); int (*symlink) (struct inode *,struct dentry *,const char *); int (*mkdir) (struct inode *,struct dentry *,int); int (*rmdir) (struct inode *,struct dentry *); int (*mknod) (struct inode *,struct dentry *,int,int); int (*rename) (struct inode *, struct dentry *, struct inode *, struct dentry *); int (*readlink) (struct dentry *, char *,int); struct dentry * (*follow_link) (struct dentry *, struct dentry *); int (*readpage) (struct file *, struct page *); int (*writepage) (struct file *, struct page *); int (*bmap) (struct inode *,int); void (*truncate) (struct inode *); int (*permission) (struct inode *, int); int (*smap) (struct inode *,int); int (*updatepage) (struct file *, struct page *, const char *, unsigned long, unsigned int, int); int (*revalidate) (struct dentry *);};Again, all methods are called without any locks being held, unlessotherwise noted. default_file_ops: this is a pointer to a "struct file_operations" which describes how to open and then manipulate open files create: called by the open(2) and creat(2) system calls. Only required if you want to support regular files. The dentry you get should not have an inode (i.e. it should be a negative dentry). Here you will probably call d_instantiate() with the dentry and the newly created inode lookup: called when the VFS needs to lookup an inode in a parent directory. The name to look for is found in the dentry. This method must call d_add() to insert the found inode into the dentry. The "i_count" field in the inode structure should be incremented. If the named inode does not exist a NULL inode should be inserted into the dentry (this is called a negative dentry). Returning an error code from this routine must only be done on a real error, otherwise creating inodes with system calls like create(2), mknod(2), mkdir(2) and so on will fail. If you wish to overload the dentry methods then you should initialise the "d_dop" field in the dentry; this is a pointer to a struct "dentry_operations". This method is called with the directory inode semaphore held link: called by the link(2) system call. Only required if you want to support hard links. You will probably need to call d_instantiate() just as you would in the create() method unlink: called by the unlink(2) system call. Only required if you want to support deleting inodes symlink: called by the symlink(2) system call. Only required if you want to support symlinks. You will probably need to call d_instantiate() just as you would in the create() method mkdir: called by the mkdir(2) system call. Only required if you want to support creating subdirectories. You will probably need to call d_instantiate() just as you would in the create() method rmdir: called by the rmdir(2) system call. Only required if you want to support deleting subdirectories mknod: called by the mknod(2) system call to create a device (char, block) inode or a named pipe (FIFO) or socket. Only required if you want to support creating these types of inodes. You will probably need to call d_instantiate() just as you would in the create() method readlink: called by the readlink(2) system call. Only required if you want to support reading symbolic links follow_link: called by the VFS to follow a symbolic link to the inode it points to. Only required if you want to support symbolic linksstruct file_operations <section>======================This describes how the VFS can manipulate an open file. As of kernel2.1.99, the following members are defined:struct file_operations { loff_t (*llseek) (struct file *, loff_t, int); ssize_t (*read) (struct file *, char *, size_t, loff_t *); ssize_t (*write) (struct file *, const char *, size_t, loff_t *); int (*readdir) (struct file *, void *, filldir_t); unsigned int (*poll) (struct file *, struct poll_table_struct *); int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long); int (*mmap) (struct file *, struct vm_area_struct *); int (*open) (struct inode *, struct file *); int (*release) (struct inode *, struct file *); int (*fsync) (struct file *, struct dentry *); int (*fasync) (struct file *, int); int (*check_media_change) (kdev_t dev); int (*revalidate) (kdev_t dev); int (*lock) (struct file *, int, struct file_lock *);};Again, all methods are called without any locks being held, unlessotherwise noted. llseek: called when the VFS needs to move the file position index read: called by read(2) and related system calls write: called by write(2) and related system calls readdir: called when the VFS needs to read the directory contents poll: called by the VFS when a process wants to check if there is activity on this file and (optionally) go to sleep until there is activity. Called by the select(2) and poll(2) system calls ioctl: called by the ioctl(2) system call mmap: called by the mmap(2) system call open: called by the VFS when an inode should be opened. When the VFS opens a file, it creates a new "struct file" and initialises the "f_op" file operations member with the "default_file_ops" field in the inode structure. It then calls the open method for the newly allocated file structure. You might think that the open method really belongs in "struct inode_operations", and you may be right. I think it's done the way it is because it makes filesystems simpler to implement. The open() method is a good place to initialise the "private_data" member in the file structure if you want to point to a device structure release: called when the last reference to an open file is closed fsync: called by the fsync(2) system call fasync: called by the fcntl(2) system call when asynchronous (non-blocking) mode is enabled for a fileNote that the file operations are implemented by the specificfilesystem in which the inode resides. When opening a device node(character or block special) most filesystems will call specialsupport routines in the VFS which will locate the required devicedriver information. These support routines replace the filesystem fileoperations with those for the device driver, and then proceed to callthe new open() method for the file. This is how opening a device filein the filesystem eventually ends up calling the device driver open()method. Note the devfs (the Device FileSystem) has a more direct pathfrom device node to device driver (this is an unofficial kernelpatch).struct dentry_operations <section>========================This describes how a filesystem can overload the standard dentryoperations. Dentries and the dcache are the domain of the VFS and theindividual filesystem implementations. Device drivers have no businesshere. These methods may be set to NULL, as they are either optional orthe VFS uses a default. As of kernel 2.1.99, the following members aredefined:struct dentry_operations { int (*d_revalidate)(struct dentry *); int (*d_hash) (struct dentry *, struct qstr *); int (*d_compare) (struct dentry *, struct qstr *, struct qstr *); void (*d_delete)(struct dentry *); void (*d_release)(struct dentry *); void (*d_iput)(struct dentry *, struct inode *);}; d_revalidate: called when the VFS needs to revalidate a dentry. This is called whenever a name lookup finds a dentry in the dcache. Most filesystems leave this as NULL, because all their dentries in the dcache are valid d_hash: called when the VFS adds a dentry to the hash table d_compare: called when a dentry should be compared with another d_delete: called when the last reference to a dentry is deleted. This means no-one is using the dentry, however it is still valid and in the dcache d_release: called when a dentry is really deallocated d_iput: called when a dentry looses its inode (just prior to its being deallocated). The default when this is NULL is that the VFS calls iput(). If you define this method, you must call iput() yourselfEach dentry has a pointer to its parent dentry, as well as a hash listof child dentries. Child dentries are basically like files in adirectory.There are a number of functions defined which permit a filesystem tomanipulate dentries: dget: open a new handle for an existing dentry (this just increments the usage count) dput: close a handle for a dentry (decrements the usage count). If the usage count drops to 0, the "d_delete" method is called and the dentry is placed on the unused list if the dentry is still in its parents hash list. Putting the dentry on the unused list just means that if the system needs some RAM, it goes through the unused list of dentries and deallocates them. If the dentry has already been unhashed and the usage count drops to 0, in this case the dentry is deallocated after the "d_delete" method is called d_drop: this unhashes a dentry from its parents hash list. A subsequent call to dput() will dellocate the dentry if its usage count drops to 0 d_delete: delete a dentry. If there are no other open references to the dentry then the dentry is turned into a negative dentry (the d_iput() method is called). If there are other references, then d_drop() is called instead d_add: add a dentry to its parents hash list and then calls d_instantiate() d_instantiate: add a dentry to the alias hash list for the inode and updates the "d_inode" member. The "i_count" member in the inode structure should be set/incremented. If the inode pointer is NULL, the dentry is called a "negative dentry". This function is commonly called when an inode is created for an existing negative dentry
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -