⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 extended.h

📁 《嵌入式系统设计与实例开发实验教材二源码》Linux内核移植与编译实验
💻 H
字号:
/* Software floating-point emulation.   Definitions for IEEE Extended Precision.   Copyright (C) 1999 Free Software Foundation, Inc.   This file is part of the GNU C Library.   Contributed by Jakub Jelinek (jj@ultra.linux.cz).   The GNU C Library is free software; you can redistribute it and/or   modify it under the terms of the GNU Library General Public License as   published by the Free Software Foundation; either version 2 of the   License, or (at your option) any later version.   The GNU C Library is distributed in the hope that it will be useful,   but WITHOUT ANY WARRANTY; without even the implied warranty of   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU   Library General Public License for more details.   You should have received a copy of the GNU Library General Public   License along with the GNU C Library; see the file COPYING.LIB.  If   not, write to the Free Software Foundation, Inc.,   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */#ifndef    __MATH_EMU_EXTENDED_H__#define    __MATH_EMU_EXTENDED_H__#if _FP_W_TYPE_SIZE < 32#error "Here's a nickel, kid. Go buy yourself a real computer."#endif#if _FP_W_TYPE_SIZE < 64#define _FP_FRACTBITS_E         (4*_FP_W_TYPE_SIZE)#else#define _FP_FRACTBITS_E		(2*_FP_W_TYPE_SIZE)#endif#define _FP_FRACBITS_E		64#define _FP_FRACXBITS_E		(_FP_FRACTBITS_E - _FP_FRACBITS_E)#define _FP_WFRACBITS_E		(_FP_WORKBITS + _FP_FRACBITS_E)#define _FP_WFRACXBITS_E	(_FP_FRACTBITS_E - _FP_WFRACBITS_E)#define _FP_EXPBITS_E		15#define _FP_EXPBIAS_E		16383#define _FP_EXPMAX_E		32767#define _FP_QNANBIT_E		\	((_FP_W_TYPE)1 << (_FP_FRACBITS_E-2) % _FP_W_TYPE_SIZE)#define _FP_IMPLBIT_E		\	((_FP_W_TYPE)1 << (_FP_FRACBITS_E-1) % _FP_W_TYPE_SIZE)#define _FP_OVERFLOW_E		\	((_FP_W_TYPE)1 << (_FP_WFRACBITS_E % _FP_W_TYPE_SIZE))#if _FP_W_TYPE_SIZE < 64union _FP_UNION_E{   long double flt;   struct    {#if __BYTE_ORDER == __BIG_ENDIAN      unsigned long pad1 : _FP_W_TYPE_SIZE;      unsigned long pad2 : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);      unsigned long sign : 1;      unsigned long exp : _FP_EXPBITS_E;      unsigned long frac1 : _FP_W_TYPE_SIZE;      unsigned long frac0 : _FP_W_TYPE_SIZE;#else      unsigned long frac0 : _FP_W_TYPE_SIZE;      unsigned long frac1 : _FP_W_TYPE_SIZE;      unsigned exp : _FP_EXPBITS_E;      unsigned sign : 1;#endif /* not bigendian */   } bits __attribute__((packed));};#define FP_DECL_E(X)		_FP_DECL(4,X)#define FP_UNPACK_RAW_E(X, val)				\  do {							\    union _FP_UNION_E _flo; _flo.flt = (val);		\							\    X##_f[2] = 0; X##_f[3] = 0;				\    X##_f[0] = _flo.bits.frac0;				\    X##_f[1] = _flo.bits.frac1;				\    X##_e  = _flo.bits.exp;				\    X##_s  = _flo.bits.sign;				\    if (!X##_e && (X##_f[1] || X##_f[0])		\        && !(X##_f[1] & _FP_IMPLBIT_E))			\      {							\        X##_e++;					\        FP_SET_EXCEPTION(FP_EX_DENORM);			\      }							\  } while (0)#define FP_UNPACK_RAW_EP(X, val)			\  do {							\    union _FP_UNION_E *_flo =				\    (union _FP_UNION_E *)(val);				\							\    X##_f[2] = 0; X##_f[3] = 0;				\    X##_f[0] = _flo->bits.frac0;			\    X##_f[1] = _flo->bits.frac1;			\    X##_e  = _flo->bits.exp;				\    X##_s  = _flo->bits.sign;				\    if (!X##_e && (X##_f[1] || X##_f[0])		\        && !(X##_f[1] & _FP_IMPLBIT_E))			\      {							\        X##_e++;					\        FP_SET_EXCEPTION(FP_EX_DENORM);			\      }							\  } while (0)#define FP_PACK_RAW_E(val, X)				\  do {							\    union _FP_UNION_E _flo;				\							\    if (X##_e) X##_f[1] |= _FP_IMPLBIT_E;		\    else X##_f[1] &= ~(_FP_IMPLBIT_E);			\    _flo.bits.frac0 = X##_f[0];				\    _flo.bits.frac1 = X##_f[1];				\    _flo.bits.exp   = X##_e;				\    _flo.bits.sign  = X##_s;				\							\    (val) = _flo.flt;					\  } while (0)#define FP_PACK_RAW_EP(val, X)				\  do {							\    if (!FP_INHIBIT_RESULTS)				\      {							\	union _FP_UNION_E *_flo =			\	  (union _FP_UNION_E *)(val);			\							\	if (X##_e) X##_f[1] |= _FP_IMPLBIT_E;		\	else X##_f[1] &= ~(_FP_IMPLBIT_E);		\	_flo->bits.frac0 = X##_f[0];			\	_flo->bits.frac1 = X##_f[1];			\	_flo->bits.exp   = X##_e;			\	_flo->bits.sign  = X##_s;			\      }							\  } while (0)#define FP_UNPACK_E(X,val)		\  do {					\    FP_UNPACK_RAW_E(X,val);		\    _FP_UNPACK_CANONICAL(E,4,X);	\  } while (0)#define FP_UNPACK_EP(X,val)		\  do {					\    FP_UNPACK_RAW_2_P(X,val);		\    _FP_UNPACK_CANONICAL(E,4,X);	\  } while (0)#define FP_PACK_E(val,X)		\  do {					\    _FP_PACK_CANONICAL(E,4,X);		\    FP_PACK_RAW_E(val,X);		\  } while (0)#define FP_PACK_EP(val,X)		\  do {					\    _FP_PACK_CANONICAL(E,4,X);		\    FP_PACK_RAW_EP(val,X);		\  } while (0)#define FP_ISSIGNAN_E(X)	_FP_ISSIGNAN(E,4,X)#define FP_NEG_E(R,X)		_FP_NEG(E,4,R,X)#define FP_ADD_E(R,X,Y)		_FP_ADD(E,4,R,X,Y)#define FP_SUB_E(R,X,Y)		_FP_SUB(E,4,R,X,Y)#define FP_MUL_E(R,X,Y)		_FP_MUL(E,4,R,X,Y)#define FP_DIV_E(R,X,Y)		_FP_DIV(E,4,R,X,Y)#define FP_SQRT_E(R,X)		_FP_SQRT(E,4,R,X)/* * Square root algorithms: * We have just one right now, maybe Newton approximation * should be added for those machines where division is fast. * This has special _E version because standard _4 square * root would not work (it has to start normally with the * second word and not the first), but as we have to do it * anyway, we optimize it by doing most of the calculations * in two UWtype registers instead of four. */ #define _FP_SQRT_MEAT_E(R, S, T, X, q)			\  do {							\    q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\    _FP_FRAC_SRL_4(X, (_FP_WORKBITS));			\    while (q)						\      {							\	T##_f[1] = S##_f[1] + q;			\	if (T##_f[1] <= X##_f[1])			\	  {						\	    S##_f[1] = T##_f[1] + q;			\	    X##_f[1] -= T##_f[1];			\	    R##_f[1] += q;				\	  }						\	_FP_FRAC_SLL_2(X, 1);				\	q >>= 1;					\      }							\    q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\    while (q)						\      {							\	T##_f[0] = S##_f[0] + q;			\	T##_f[1] = S##_f[1];				\	if (T##_f[1] < X##_f[1] || 			\	    (T##_f[1] == X##_f[1] &&			\	     T##_f[0] <= X##_f[0]))			\	  {						\	    S##_f[0] = T##_f[0] + q;			\	    S##_f[1] += (T##_f[0] > S##_f[0]);		\	    _FP_FRAC_DEC_2(X, T);			\	    R##_f[0] += q;				\	  }						\	_FP_FRAC_SLL_2(X, 1);				\	q >>= 1;					\      }							\    _FP_FRAC_SLL_4(R, (_FP_WORKBITS));			\    if (X##_f[0] | X##_f[1])				\      {							\	if (S##_f[1] < X##_f[1] || 			\	    (S##_f[1] == X##_f[1] &&			\	     S##_f[0] < X##_f[0]))			\	  R##_f[0] |= _FP_WORK_ROUND;			\	R##_f[0] |= _FP_WORK_STICKY;			\      }							\  } while (0)#define FP_CMP_E(r,X,Y,un)	_FP_CMP(E,4,r,X,Y,un)#define FP_CMP_EQ_E(r,X,Y)	_FP_CMP_EQ(E,4,r,X,Y)#define FP_TO_INT_E(r,X,rsz,rsg)	_FP_TO_INT(E,4,r,X,rsz,rsg)#define FP_TO_INT_ROUND_E(r,X,rsz,rsg)	_FP_TO_INT_ROUND(E,4,r,X,rsz,rsg)#define FP_FROM_INT_E(X,r,rs,rt)	_FP_FROM_INT(E,4,X,r,rs,rt)#define _FP_FRAC_HIGH_E(X)	(X##_f[2])#define _FP_FRAC_HIGH_RAW_E(X)	(X##_f[1])#else   /* not _FP_W_TYPE_SIZE < 64 */union _FP_UNION_E{  long double flt /* __attribute__((mode(TF))) */ ;  struct {#if __BYTE_ORDER == __BIG_ENDIAN    unsigned long pad : (_FP_W_TYPE_SIZE - 1 - _FP_EXPBITS_E);    unsigned sign  : 1;    unsigned exp   : _FP_EXPBITS_E;    unsigned long frac : _FP_W_TYPE_SIZE;#else    unsigned long frac : _FP_W_TYPE_SIZE;    unsigned exp   : _FP_EXPBITS_E;    unsigned sign  : 1;#endif  } bits;};#define FP_DECL_E(X)		_FP_DECL(2,X)#define FP_UNPACK_RAW_E(X, val)					\  do {								\    union _FP_UNION_E _flo; _flo.flt = (val);			\								\    X##_f0 = _flo.bits.frac;					\    X##_f1 = 0;							\    X##_e = _flo.bits.exp;					\    X##_s = _flo.bits.sign;					\    if (!X##_e && X##_f0 && !(X##_f0 & _FP_IMPLBIT_E))		\      {								\        X##_e++;						\        FP_SET_EXCEPTION(FP_EX_DENORM);				\      }								\  } while (0)#define FP_UNPACK_RAW_EP(X, val)				\  do {								\    union _FP_UNION_E *_flo =					\      (union _FP_UNION_E *)(val);				\								\    X##_f0 = _flo->bits.frac;					\    X##_f1 = 0;							\    X##_e = _flo->bits.exp;					\    X##_s = _flo->bits.sign;					\    if (!X##_e && X##_f0 && !(X##_f0 & _FP_IMPLBIT_E))		\      {								\        X##_e++;						\        FP_SET_EXCEPTION(FP_EX_DENORM);				\      }								\  } while (0)#define FP_PACK_RAW_E(val, X)					\  do {								\    union _FP_UNION_E _flo;					\								\    if (X##_e) X##_f0 |= _FP_IMPLBIT_E;				\    else X##_f0 &= ~(_FP_IMPLBIT_E);				\    _flo.bits.frac = X##_f0;					\    _flo.bits.exp  = X##_e;					\    _flo.bits.sign = X##_s;					\								\    (val) = _flo.flt;						\  } while (0)#define FP_PACK_RAW_EP(fs, val, X)				\  do {								\    if (!FP_INHIBIT_RESULTS)					\      {								\	union _FP_UNION_E *_flo =				\	  (union _FP_UNION_E *)(val);				\								\	if (X##_e) X##_f0 |= _FP_IMPLBIT_E;			\	else X##_f0 &= ~(_FP_IMPLBIT_E);			\	_flo->bits.frac = X##_f0;				\	_flo->bits.exp  = X##_e;				\	_flo->bits.sign = X##_s;				\      }								\  } while (0)#define FP_UNPACK_E(X,val)		\  do {					\    FP_UNPACK_RAW_E(X,val);		\    _FP_UNPACK_CANONICAL(E,2,X);	\  } while (0)#define FP_UNPACK_EP(X,val)		\  do {					\    FP_UNPACK_RAW_EP(X,val);		\    _FP_UNPACK_CANONICAL(E,2,X);	\  } while (0)#define FP_PACK_E(val,X)		\  do {					\    _FP_PACK_CANONICAL(E,2,X);		\    FP_PACK_RAW_E(val,X);		\  } while (0)#define FP_PACK_EP(val,X)		\  do {					\    _FP_PACK_CANONICAL(E,2,X);		\    FP_PACK_RAW_EP(val,X);		\  } while (0)#define FP_ISSIGNAN_E(X)	_FP_ISSIGNAN(E,2,X)#define FP_NEG_E(R,X)		_FP_NEG(E,2,R,X)#define FP_ADD_E(R,X,Y)		_FP_ADD(E,2,R,X,Y)#define FP_SUB_E(R,X,Y)		_FP_SUB(E,2,R,X,Y)#define FP_MUL_E(R,X,Y)		_FP_MUL(E,2,R,X,Y)#define FP_DIV_E(R,X,Y)		_FP_DIV(E,2,R,X,Y)#define FP_SQRT_E(R,X)		_FP_SQRT(E,2,R,X)/* * Square root algorithms: * We have just one right now, maybe Newton approximation * should be added for those machines where division is fast. * We optimize it by doing most of the calculations * in one UWtype registers instead of two, although we don't * have to. */#define _FP_SQRT_MEAT_E(R, S, T, X, q)			\  do {							\    q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\    _FP_FRAC_SRL_2(X, (_FP_WORKBITS));			\    while (q)						\      {							\        T##_f0 = S##_f0 + q;				\        if (T##_f0 <= X##_f0)				\          {						\            S##_f0 = T##_f0 + q;			\            X##_f0 -= T##_f0;				\            R##_f0 += q;				\          }						\        _FP_FRAC_SLL_1(X, 1);				\        q >>= 1;					\      }							\    _FP_FRAC_SLL_2(R, (_FP_WORKBITS));			\    if (X##_f0)						\      {							\	if (S##_f0 < X##_f0)				\	  R##_f0 |= _FP_WORK_ROUND;			\	R##_f0 |= _FP_WORK_STICKY;			\      }							\  } while (0) #define FP_CMP_E(r,X,Y,un)	_FP_CMP(E,2,r,X,Y,un)#define FP_CMP_EQ_E(r,X,Y)	_FP_CMP_EQ(E,2,r,X,Y)#define FP_TO_INT_E(r,X,rsz,rsg)	_FP_TO_INT(E,2,r,X,rsz,rsg)#define FP_TO_INT_ROUND_E(r,X,rsz,rsg)	_FP_TO_INT_ROUND(E,2,r,X,rsz,rsg)#define FP_FROM_INT_E(X,r,rs,rt)	_FP_FROM_INT(E,2,X,r,rs,rt)#define _FP_FRAC_HIGH_E(X)	(X##_f1)#define _FP_FRAC_HIGH_RAW_E(X)	(X##_f0)#endif /* not _FP_W_TYPE_SIZE < 64 */#endif /* __MATH_EMU_EXTENDED_H__ */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -