📄 poaasvm.m
字号:
function poaaosvm(model,background)% POAASVM vizualizes One-Against-All SVM decision rule.% poaasvm(model,background)%% Input:% model [struct] model of classifier.% background [int] 0 - no, 1 - yes.%% Statistical Pattern Recognition Toolbox, Vojtech Franc, Vaclav Hlavac% (c) Czech Technical University Prague, http://cmp.felk.cvut.cz% Written Vojtech Franc (diploma thesis) 23.12.1999, 5.4.2000% Modifications% 26-aug-2002, VF% 9-july-2002, VF% 19-sep-2001, V. Franc, comments changed.% 20-may-2001, V. Franc, new approach% 16-april-2001, V. Franc, createdif nargin < 2, background = 0;end% points sizePOINTSSIZE=10; % grid for x-axis and y-axisGRIDX=150;GRIDY=150;epsilon=1e-5;if nargin < 1, error('Not enough input arguments.'); return;endppatterns(model.trn_data,model.trn_labels,POINTSSIZE);hold on;V = axis;dx = (V(2)-V(1))/GRIDX;dy = (V(4)-V(3))/GRIDY;[X,Y] = meshgrid(V(1):dx:V(2),V(3):dy:V(4));% make testing pointstst_data=[reshape(X',1,prod(size(X)));reshape(Y',1,prod(size(Y)))];% classify pointsD = zeros(model.num_classes,size(tst_data,2) );for i=1:model.num_classes, [pred_labels,dfce] = svmclass2(tst_data,model.trn_data,... multi2dicho(model.trn_labels,i),... model.rule{i}.Alpha,model.rule{i}.bias,model.SVM.kernel,model.SVM.arg); D(i,:) = dfce; endpdiscrim( D, V(1):dx:V(2), V(3):dy:V(4),background );if background, ppatterns(model.trn_data,'kx',POINTSSIZE);else ppatterns(model.trn_data,model.trn_labels,POINTSSIZE);endaxis(V);hold off;return;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -