📄 kgilbert.c
字号:
/*---------------------------------------------------------------------------[Alpha,bias,sol,t,kercnt,margin,trnerr]= kgilbert(data,labels,stop,ker,arg,tmax,C) KGILBERT kernel Gilbert's algorithm. It solves the Support vector Machines problem with quadratic cost function for classification violations. Inputs: data [dim x N] training patterns labels [1 x N] labels of training patterns stop [real] defines precision of the found hyperplane; ker [string] kernel, see 'help kernel'. arg [...] argument of given kernel, see 'help kernel'. tmax [int] maximal number of iterations. C [real] trade-off between margin and training error. Outputs: Alpha [1xN] Lagrangians defining found decision rule. bias [real] bias (threshold) of found decision rule. sol [int] 1 solution is found 0 algorithm stoped (t == tmax) before converged. -1 hyperplane with margin greater then epsilon does not exist. t [int] number of iterations. kercnt [int] number of kernel evaluations. margin [real] margin between classes. trnerr [real] training error. See also SVM. Statistical Pattern Recognition Toolbox, Vojtech Franc, Vaclav Hlavac (c) Czech Technical University Prague, http://cmp.felk.cvut.cz Written Vojtech Franc (diploma thesis) 02.11.1999, 13.4.2000 Modifications 14-jun-2002, VF-------------------------------------------------------------------- */#include "mex.h"#include "matrix.h"#include <math.h>#include <stdlib.h>#include <string.h>#include <limits.h>#include "kernel.h"#define MINUS_INF INT_MIN#define PLUS_INF INT_MAX/* case insensitive string comparision */#ifdef __BORLANDC__ #define STR_COMPARE(A,B,C) strncmpi(A,B,C) /* Borland */#else #define STR_COMPARE(A,B,C) strncmp(A,B,C) /* Linux gcc */#endif#define MAX(A,B) (((A) > (B)) ? (A) : (B) )#define MIN(A,B) (((A) < (B)) ? (A) : (B) )#define ABS(A) (((A) < (0)) ? (-A) : (A) )double kadd; /* diagonal additional term *//*------------------------------------------------*/double ckernel( long i, long j) { if( i!=j ) return( kernel(i,j)); else return(kernel(i,j)+kadd);}/* ============================================================== Main MEX function - interface to Matlab.============================================================== */void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray*prhs[] ){ char skernel[10]; long t; /* iteration number */ long i, j; /* loop variables */ int sol; /* solution: 1=found, 0=not found, -1=does not exist*/ long inx1, inx2; /* --//-- */ double k; /* --//-- */ double *wx; double minwx1, maxwx2; long t1, t2; double ker11, ker12, ker22; double w2; double margin2; double *labels; /* pointer at labels */ long N; /* number of training patterns */ double *stop; /* stopping criterion */ long tmax; /* maximal number of iterations */ double C; /* trade-off constant */ double *alpha; /* Lagrangians */ double *bias; /* threshold of the learned indicator function */ double margin; /* margin in the original space */ double trn_err; /* training error */ double dfun; /* value of decision function */ /* ---- CHECK INPUT ARGUMENTS ----------------------- */ if(nrhs < 7) mexErrMsgTxt("Not enough input arguments."); if(nlhs < 3) mexErrMsgTxt("Not enough output arguments."); /* data matrix [dim x N ] */ if( !mxIsNumeric(prhs[0]) || !mxIsDouble(prhs[0]) || mxIsEmpty(prhs[0]) || mxIsComplex(prhs[0]) ) mexErrMsgTxt("Input X must be a real matrix."); /* labels [1 x N ] */ if( !mxIsNumeric(prhs[1]) || !mxIsDouble(prhs[1]) || mxIsEmpty(prhs[1]) || mxIsComplex(prhs[1]) ) mexErrMsgTxt("Input I must be a real vector."); /* stopping condition */ if( !mxIsNumeric(prhs[2]) || !mxIsDouble(prhs[2]) || mxIsEmpty(prhs[2]) || mxIsComplex(prhs[2])) mexErrMsgTxt("Input stop must be a real number."); /* a string as kernel identifier ('linear',poly','rbf' ) */ if( mxIsChar(prhs[3]) != 1 || mxGetM(prhs[3]) != 1 ) mexErrMsgTxt("Input ker must be a string"); else { /* check which kernel */ mxGetString( prhs[3], skernel, 10 ); if( STR_COMPARE( skernel, "linear", 6) == 0 ) { ker = 0; } else if( STR_COMPARE( skernel, "poly", 4) == 0 ) { ker = 1; } else if( STR_COMPARE( skernel, "rbf", 3) == 0 ) { ker = 2; } else mexErrMsgTxt("Unknown kernel identifier."); } /* real input argument for polynomial and rbf kernel */ if( ker == 1 || ker == 2) { if( !mxIsNumeric(prhs[4]) || !mxIsDouble(prhs[4]) || mxIsEmpty(prhs[4]) || mxIsComplex(prhs[4]) || mxGetN(prhs[4]) != 1 || mxGetM(prhs[4]) != 1 ) mexErrMsgTxt("Input arg must be a real scalar."); else { arg1 = mxGetScalar(prhs[4]); /* take kernel argument */ /* if kernel is RBF than recompute its argument */ if( ker == 2) arg1 = -2*arg1*arg1; } } /* tmax */ if( !mxIsNumeric(prhs[5]) || !mxIsDouble(prhs[5]) || mxIsEmpty(prhs[5]) || mxIsComplex(prhs[5]) || (mxGetN(prhs[5]) != 1 && mxGetM(prhs[5]) != 1 )) mexErrMsgTxt("Input tmax must be an integer."); /* one or two real trade-off*/ if( !mxIsNumeric(prhs[6]) || !mxIsDouble(prhs[6]) || mxIsEmpty(prhs[6]) || mxIsComplex(prhs[6]) || (mxGetN(prhs[6]) != 1 && mxGetM(prhs[6]) != 1 )) mexErrMsgTxt("Input C must be a real scalar."); /* ---- GET INPUT ARGUMENTS ------------------------------- */ dataA = mxGetPr(prhs[0]); /* pointer at patterns */ dataB = mxGetPr(prhs[0]); /* pointer at patterns */ labels = mxGetPr(prhs[1]); /* pointer at labels */ dim = mxGetM(prhs[0]); /* data dimension */ N = mxGetN(prhs[0]); /* number of data */ stop = mxGetPr(prhs[2]); if( mxIsInf( mxGetScalar(prhs[5])) ) { tmax = INT_MAX; } else { tmax = (long)mxGetScalar(prhs[5]); } C = mxGetScalar(prhs[6]); // computes additional term to kernel value on the diagonal if( C != 0 ) kadd = 1/(2*C); else kadd = 0; /* create vector for Lagrangeians */ plhs[0] = mxCreateDoubleMatrix(1,N,mxREAL); alpha = mxGetPr(plhs[0]); /*-- INICIALIZATION ------------------------------*/ ker_cnt = 0; /* counter for number of kernel evaluetions */ // inicialization of cached values if( (wx = mxCalloc(N, sizeof(double))) == NULL) { mexErrMsgTxt("Not enough memory for error cache."); } /* takes two vectors as an initial solution */ for( inx1 = -1, inx2 = -1, i=0; i < N && (inx1==-1 || inx2==-1); i++ ) { if( labels[i] == 1 && inx1 == -1) { inx1 = i; alpha[i] = 1; } else if( labels[i] == 2 && inx2 == -1) { alpha[i] = -1; inx2 = i; } } /* inits cache values */ // mexPrintf("wx="); for( i=0; i < N; i++) { wx[i] = ckernel(inx1,i) -ckernel(inx2,i); // mexPrintf("%f ", wx[i]); } w2 = ckernel(inx1,inx1)+ckernel(inx2,inx2)-2*ckernel(inx1,inx2); // mexPrintf("\nw2=%f\n", w2); sol=0; t = 0; /* -- MAIN OPTIMIZATION CYCLE ------------------------ */ while( sol == 0 && tmax > t ) { t++; // -- compute auxciliary variables -- // [minw1x,t1]=min(wx(inx1));// [minw2x,t2]=max(wx(inx2)); minwx1=PLUS_INF; maxwx2=MINUS_INF; for(i=0; i < N; i++ ) { if( labels[i] ==1 ) { if( minwx1 > wx[i] ) {minwx1=wx[i]; t1 = i; } } else { if( maxwx2 < wx[i] ) {maxwx2=wx[i]; t2 = i; } } } // mexPrintf("minwx1=%f, t1=%d, maxwx2=%f, t2=%d\n",minwx1,t1,maxwx2,t2); /* --- stoping condition for the 1st class ------ */ if( (stop[0]==1 && (sqrt(w2)-(minwx1-maxwx2)/sqrt(w2)) >= stop[1] ) || (stop[0]==2 && (1-(minwx1-maxwx2)/w2 >= stop[1]) ) ) {// k=min(1,abs((w2-wx(inx1(t1))+wx(inx2(t2)))/...// (w2-2*(wx(inx1(t1))-wx(inx2(t2))) + ...// (xt1'*xt1-2*xt1'*xt2 + xt2'*xt2)))); ker11 = ckernel(t1,t1); ker12 = ckernel(t1,t2); ker22 = ckernel(t2,t2); k=MIN(1, ABS( (w2 - wx[t1] + wx[t2])/ (w2-2*(wx[t1]-wx[t2])+(ker11-2*ker12+ker22)))); // w2=k^2*(xt1'*xt1+xt2'*xt2-2*xt1'*xt2)+(1-k)^2*w2+...// 2*k*(1-k)*(wx(inx1(t1))-wx(inx2(t2))); w2=k*k*(ker11+ker22-2*ker12)+(1-k)*(1-k)*w2+ 2*k*(1-k)*(wx[t1]-wx[t2]); // mexPrintf("k=%f, w2=%f\n",k,w2); // %----------------------// for i=1:num_data,//% wx(i)=(1-k)*(wx(i)-a1*data(:,i)'*xt1-a2*data(:,i)'*xt2)...//% +((1-k)*a1+k)*data(:,i)'*xt1...//% +((1-k)*a2-k)*data(:,i)'*xt2;// wx(i)=k*(data(:,i)'*xt1-data(:,i)'*xt2)+(1-k)*wx(i);// end// alpha=alpha*(1-k);// alpha(inx1(t1))=alpha(inx1(t1))+k;// alpha(inx2(t2))=alpha(inx2(t2))-k; // mexPrintf("wx="); for(i=0; i <N; i++ ) { wx[i] = k*(ckernel(i,t1)-ckernel(i,t2))+(1-k)*wx[i]; // mexPrintf("%f ", wx[i]); alpha[i]=alpha[i]*(1-k); } // mexPrintf("\n"); alpha[t1]+=k; alpha[t2]-=k; // mexPrintf("t=%d:alpha=",t); // for(i=0;i<N;i++) mexPrintf("%f ",alpha[i]); // mexPrintf("\n"); } else { sol=1; } if( w2 <= 0 ) { // algorithm has converged to the zero vector --> classes overlap sol = -1; } } // while(...) /* --- COMPUTATION OF OUTPUT VALUES ----------------------- */ // sqared margin in transformed space margin2 = w2; // threshold after normalization plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL); bias = mxGetPr(plhs[1]); *bias = -(minwx1 + maxwx2)/margin2; // mexPrintf("0.5*(min <w,x1> - max<w,x2>)/|w|=%f\n", 0.5*(minwx1 - maxwx2)/sqrt(w2)); // solution (normal vect. in the transformed space) after normalization for( i=0; i < N; i++ ) { if(labels[i]==1) alpha[i] *= 2/margin2; else alpha[i] *= -2/margin2; } // compute margin if( nlhs >= 6 ) { margin = 0; margin = 0; for(i = 0; i < N; i++ ) { for( j=0; j < N; j++ ) { if( alpha[i] != 0 && alpha[j] != 0 ) { if( labels[i] == labels[j] ) margin += alpha[i]*alpha[j]*kernel(i,j); else margin -= alpha[i]*alpha[j]*kernel(i,j); } } } margin = 1/sqrt(margin); plhs[5] = mxCreateDoubleMatrix(1,1,mxREAL); (*mxGetPr(plhs[5])) = margin; } // training errors if( nlhs >= 7 ) { trn_err = 0; for(i = 0; i < N; i++ ) { dfun = 0; for( j=0; j < N; j++ ) { if( alpha[j] != 0 ) { if( labels[j] == 1) dfun += alpha[j]*kernel(i,j); else dfun -= alpha[j]*kernel(i,j); } } if( (3-labels[i]*2)*(dfun + *bias) < 0) trn_err++; } plhs[6] = mxCreateDoubleMatrix(1,1,mxREAL); (*mxGetPr(plhs[6])) = trn_err/N; } // number of kernel evaluations if( nlhs >= 5 ) { plhs[4] = mxCreateDoubleMatrix(1,1,mxREAL); (*mxGetPr(plhs[4])) = (double)ker_cnt; } // solution 1 (found), 0 (not found), -1 (does not exist) if( nlhs >= 3 ) { plhs[2] = mxCreateDoubleMatrix(1,1,mxREAL); (*mxGetPr(plhs[2])) = (double)sol; } // number of iterations if( nlhs >= 4 ) { plhs[3] = mxCreateDoubleMatrix(1,1,mxREAL); (*mxGetPr(plhs[3])) = (double)t; } /* ----- FREE MEMORY ----------------------- */ mxFree( wx ); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -