📄 romma.c
字号:
/*---------------------------------------------------------------------------[Alpha,bias,sol,t,kercnt,margin,trnerr]= romma(data,labels,eps,ker,arg,tmax,C) ROMMA Relaxed On-line Maximum Margin Algorithm. It solves the Support vector Machines problem with quadratic cost function for classification violations. Inputs: data [dim x N] training patterns labels [1 x N] labels of training patterns eps [real] defines maximal possible violation of KKT-cond.; ker [string] kernel, see 'help kernel'. arg [...] argument of given kernel, see 'help kernel'. tmax [int] maximal number of iterations. C [real] trade-off between margin and training error. Outputs: Alpha [1xN] Lagrangians defining found decision rule. bias [real] bias (threshold) of found decision rule. sol [int] 1 solution is found 0 algorithm stoped (t == tmax) before converged. -1 hyperplane with margin greater then epsilon does not exist. t [int] number of iterations. kercnt [int] number of kernel evaluations. margin [real] margin between classes. trnerr [real] training error. See also SVM. Statistical Pattern Recognition Toolbox, Vojtech Franc, Vaclav Hlavac (c) Czech Technical University Prague, http://cmp.felk.cvut.cz Written Vojtech Franc (diploma thesis) 02.11.1999, 13.4.2000 Modifications 20-jun-2002, VF 14-jun-2002, VF-------------------------------------------------------------------- */#include "mex.h"#include "matrix.h"#include <math.h>#include <stdlib.h>#include <string.h>#include <limits.h>#include "kernel.h"#define MINUS_INF INT_MIN#define PLUS_INF INT_MAX/* case insensitive string comparision */#ifdef __BORLANDC__ #define STR_COMPARE(A,B,C) strncmpi(A,B,C) /* Borland */#else #define STR_COMPARE(A,B,C) strncmp(A,B,C) /* Linux gcc */#endif#define MAX(A,B) (((A) > (B)) ? (A) : (B) )#define MIN(A,B) (((A) < (B)) ? (A) : (B) )#define ABS(A) (((A) < (0)) ? (-A) : (A) )#define y(A) (labels[A]*2-3)double kadd; /* diagonal additional term *//*------------------------------------------------*/double ckernel( long i, long j) { if( i!=j ) return( kernel(i,j)+1); else return(kernel(i,j)+kadd+1);}/* ============================================================== Main MEX function - interface to Matlab.============================================================== */void mexFunction( int nlhs, mxArray *plhs[], int nrhs, const mxArray*prhs[] ){ char skernel[10]; long t; /* iteration number */ long i, j; /* loop variables */ int sol; /* solution: 1=found, 0=not found, -1=does not exist*/ long inx1, inx2; /* --//-- */ double k; /* --//-- */ double *wx; double minwx1, maxwx2; long t1, t2; double ker11, ker12, ker22; double w2; double margin2; double *labels; /* pointer at labels */ long N; /* number of training patterns */ double eps; /* stopping criterion */ long tmax; /* maximal number of iterations */ double C; /* trade-off constant */ double *alpha; /* Lagrangians */ double *bias; /* threshold of the learned indicator function */ double margin; /* margin in the original space */ double trn_err; /* training error */ double dfun; /* value of decision function */ double ct, dt, tmp, kk; /* ---- CHECK INPUT ARGUMENTS ----------------------- */ if(nrhs < 7) mexErrMsgTxt("Not enough input arguments."); if(nlhs < 3) mexErrMsgTxt("Not enough output arguments."); /* data matrix [dim x N ] */ if( !mxIsNumeric(prhs[0]) || !mxIsDouble(prhs[0]) || mxIsEmpty(prhs[0]) || mxIsComplex(prhs[0]) ) mexErrMsgTxt("Input X must be a real matrix."); /* labels [1 x N ] */ if( !mxIsNumeric(prhs[1]) || !mxIsDouble(prhs[1]) || mxIsEmpty(prhs[1]) || mxIsComplex(prhs[1]) ) mexErrMsgTxt("Input I must be a real vector."); /* stopping condition */ if( !mxIsNumeric(prhs[2]) || !mxIsDouble(prhs[2]) || mxIsEmpty(prhs[2]) || mxIsComplex(prhs[2])) mexErrMsgTxt("Input stop must be a real number."); /* a string as kernel identifier ('linear',poly','rbf' ) */ if( mxIsChar(prhs[3]) != 1 || mxGetM(prhs[3]) != 1 ) mexErrMsgTxt("Input ker must be a string"); else { /* check which kernel */ mxGetString( prhs[3], skernel, 10 ); if( STR_COMPARE( skernel, "linear", 6) == 0 ) { ker = 0; } else if( STR_COMPARE( skernel, "poly", 4) == 0 ) { ker = 1; } else if( STR_COMPARE( skernel, "rbf", 3) == 0 ) { ker = 2; } else mexErrMsgTxt("Unknown kernel identifier."); } /* real input argument for polynomial and rbf kernel */ if( ker == 1 || ker == 2) { if( !mxIsNumeric(prhs[4]) || !mxIsDouble(prhs[4]) || mxIsEmpty(prhs[4]) || mxIsComplex(prhs[4]) || mxGetN(prhs[4]) != 1 || mxGetM(prhs[4]) != 1 ) mexErrMsgTxt("Input arg must be a real scalar."); else { arg1 = mxGetScalar(prhs[4]); /* take kernel argument */ /* if kernel is RBF than recompute its argument */ if( ker == 2) arg1 = -2*arg1*arg1; } } /* tmax */ if( !mxIsNumeric(prhs[5]) || !mxIsDouble(prhs[5]) || mxIsEmpty(prhs[5]) || mxIsComplex(prhs[5]) || (mxGetN(prhs[5]) != 1 && mxGetM(prhs[5]) != 1 )) mexErrMsgTxt("Input tmax must be an integer."); /* one or two real trade-off*/ if( !mxIsNumeric(prhs[6]) || !mxIsDouble(prhs[6]) || mxIsEmpty(prhs[6]) || mxIsComplex(prhs[6]) || (mxGetN(prhs[6]) != 1 && mxGetM(prhs[6]) != 1 )) mexErrMsgTxt("Input C must be a real scalar."); /* ---- GET INPUT ARGUMENTS ------------------------------- */ dataA = mxGetPr(prhs[0]); /* pointer at patterns */ dataB = mxGetPr(prhs[0]); /* pointer at patterns */ labels = mxGetPr(prhs[1]); /* pointer at labels */ dim = mxGetM(prhs[0]); /* data dimension */ N = mxGetN(prhs[0]); /* number of data */ eps = mxGetScalar(prhs[2]); if( mxIsInf( mxGetScalar(prhs[5])) ) { tmax = INT_MAX; } else { tmax = (long)mxGetScalar(prhs[5]); } C = mxGetScalar(prhs[6]); // computes additional term to kernel value on the diagonal if( C != 0 ) kadd = 1/(2*C); else kadd = 0; /* create vector for Lagrangeians */ plhs[0] = mxCreateDoubleMatrix(1,N,mxREAL); alpha = mxGetPr(plhs[0]); /*-- INICIALIZATION ------------------------------*/ ker_cnt = 0; /* counter for number of kernel evaluetions */ // inicialization of cached values if( (wx = mxCalloc(N, sizeof(double))) == NULL) { mexErrMsgTxt("Not enough memory for error cache."); } /* takes two vectors as an initial solution */ for( i=0; i < N; i++ ) { alpha[i] = 0; } alpha[0]=y(0)/ckernel(0,0); w2 = alpha[0]*alpha[0]*ckernel(0,0); //aKa=alpha(1)*alpha(1)*K(1,1); //xka=zeros(num_data,1); //for i=1:num_data, // xka(i)=alpha(1)*K(i,1); //end /* inits cache values */ // mexPrintf("wx="); for( i=0; i < N; i++) { wx[i] = alpha[0]*ckernel(0,i); // mexPrintf("%f ", wx[i]); } sol=0; t = 0; /* -- MAIN OPTIMIZATION CYCLE ------------------------ */ while( sol == 0 && tmax > t ) { t++; sol=1; for( i=0; i< N; i++ ) { // ywx = yt*K(i,:)*alpha; if( y(i)*wx[i] < 1-eps) { kk=ckernel(i,i); // ct= (K(i,i)*aKa-yt*xka(i))/(K(i,i)*aKa - xka(i)^2); ct=(kk*w2 -y(i)*wx[i])/(kk*w2 - wx[i]*wx[i]); // dt= (aKa*(yt-xka(i)))/(K(i,i)*aKa - xka(i)^2); dt=(w2*(y(i)-wx[i]))/(kk*w2 - wx[i]*wx[i]); // tmp=0; // for j=1:num_data, // tmp=tmp+alpha(j)*K(i,j); // xka(j) = ct*xka(j) + dt*K(i,j); // end // aKa= ct^2 * aKa + 2*ct*dt*tmp + dt^2*K(i,i); for( tmp=0,j=0; j <N; j++ ) { tmp += alpha[j]*ckernel(i,j); wx[j] = ct*wx[j] + dt*ckernel(i,j); } w2=ct*ct*w2 + 2*ct*dt*tmp + dt*dt*kk; for( tmp=0,j=0; j <N; j++ ) { alpha[j] = ct*alpha[j]; } alpha[i] += dt; // alpha=ct*alpha; // alpha(i)=alpha(i)+dt; sol=0; } } } // while(...) /* --- COMPUTATION OF OUTPUT VALUES ----------------------- */ // threshold plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL); bias = mxGetPr(plhs[1]); for(tmp=0, i=0; i < N; i++) { tmp += alpha[i]; alpha[i]*=y(i); } *bias=-tmp; //b=sum(alpha); //alpha=(alpha.*y)'; // plhs[2] = mxCreateDoubleMatrix(1,1,mxREAL); *(mxGetPr(plhs[2]))=sol; plhs[3] = mxCreateDoubleMatrix(1,1,mxREAL); *(mxGetPr(plhs[3]))=t; plhs[4] = mxCreateDoubleMatrix(1,1,mxREAL); *(mxGetPr(plhs[4]))=ker_cnt; // compute margin if( nlhs >= 6 ) { margin = 0; margin = 0; for(i = 0; i < N; i++ ) { for( j=0; j < N; j++ ) { if( alpha[i] != 0 && alpha[j] != 0 ) { if( labels[i] == labels[j] ) margin += alpha[i]*alpha[j]*kernel(i,j); else margin -= alpha[i]*alpha[j]*kernel(i,j); } } } margin = 1/sqrt(margin); plhs[5] = mxCreateDoubleMatrix(1,1,mxREAL); (*mxGetPr(plhs[5])) = margin; } // training errors if( nlhs >= 7 ) { trn_err = 0; for(i = 0; i < N; i++ ) { dfun = 0; for( j=0; j < N; j++ ) { if( alpha[j] != 0 ) { if( labels[j] == 1) dfun += alpha[j]*kernel(i,j); else dfun -= alpha[j]*kernel(i,j); } } if( (3-labels[i]*2)*(dfun + *bias) < 0) trn_err++; } plhs[6] = mxCreateDoubleMatrix(1,1,mxREAL); (*mxGetPr(plhs[6])) = trn_err/N; } /* ----- FREE MEMORY ----------------------- */ mxFree( wx ); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -