📄 lat6.m
字号:
function eo = lat6(input,d,lambda,eta,order);
% QR-array based RLS lattice filter
% returns the a-priori output error sequence
N = max(size(input));
M = order;
% Initialization of M-order vectors
gamma = ones(M+1,1);
b = zeros(M,1);
qf = zeros(M,1);
qb = zeros(M,1);
q = zeros(M,1);
xif = (1/eta*lambda*lambda)*ones(M,1);
xib = (1/eta*lambda*lambda)*ones(M,1);
for m=0:M-1
xib(m+1) = xib(m+1)/lambda^m;
end
xif = sqrt(xif);
xib = sqrt(xib);
xibo = xib;
for i=1:N
bo = b;
gamma = ones(M+1,1); % square-root of gamma denoted by gamma still
b(1) = input(i);
f(1) = input(i);
r(1) = d(i);
for m=1:M
A1 = [lambda^(1/2)*xibo(m) bo(m); lambda^(1/2)*(qf(m))' (f(m))'];
[c s] = givens(A1(1,1),A1(1,2));
B1 = A1*[c -s; conj(s) c];
qf(m) = (B1(2,1))';
f(m+1) = (B1(2,2))';
xib(m) = B1(1,1);
xibo(m) = xib(m);
A2 = [lambda^(1/2)*xib(m) b(m); lambda^(1/2)*(q(m))' (r(m))'; 0 gamma(m)];
[c s] = givens(A2(1,1),A2(1,2));
B2 = A2*[c -s; conj(s) c];
xib(m) = B2(1,1);
q(m) = (B2(2,1))';
r(m+1) = (B2(2,2))';
gamma(m+1) = B2(3,2); % square-root of conversion factor
A3 = [lambda^(1/2)*xif(m) f(m); lambda^(1/2)*(qb(m))' (bo(m))'];
[c s] = givens(A3(1,1),A3(1,2));
B3 = A3*[c -s; conj(s) c];
xif(m) = B3(1,1);
qb(m) = (B3(2,1))';
b(m+1) = (B3(2,2))';
ro(m+1) = r(m+1)*gamma(m+1);
end
eo(i) = r(M+1)/gamma(M+1);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -