📄 lat4q.m
字号:
function eo = lat4q(input,d,lambda,eta,order,B);
% Quantized a posteriori-based error feedback RLS lattice filter
% returns the a-priori output error sequence
N = max(size(input));
M = order;
% Initialization of M-order vectors
gamma = ones(M+1,1);
b = zeros(M,1);
kappaf = zeros(M,1);
kappab = zeros(M,1);
kappa = zeros(M,1);
xif = (1/eta*lambda*lambda)*ones(M,1);
xib = (1/eta*lambda*lambda)*ones(M,1);
for m=0:M-1
xib(m+1) = xib(m+1)/lambda^m;
end
xif = quantize_v(xif,B);
xib = quantize_v(xib,B);
xibo = xib;
for i=1:N
gammao = gamma;
bo = b;
xiboo = xibo;
xibo = xib;
xifo = xif;
gamma = ones(M+1,1);
b(1) = input(i);
f(1) = input(i);
r(1) = d(i);
for m=1:M
xif(m) = quantize(quantize(lambda*xif(m),B) + quantize((abs(f(m)))^2/gammao(m),B),B);
xib(m) = quantize(quantize(lambda*xib(m),B) + quantize((abs(b(m)))^2/gamma(m),B),B);
gamma(m+1) = quantize(gamma(m) - quantize(abs(b(m))^2/xib(m),B),B);
a1 = quantize(kappa(m) + quantize(((b(m))'*r(m))/(lambda*gamma(m)*xibo(m)),B),B);
kappa(m) = quantize((gamma(m+1)/gamma(m))*a1,B);
a1 = quantize(kappaf(m) + quantize(((bo(m))'*f(m))/(lambda*gammao(m)*xiboo(m)),B),B);
kappaf(m) = quantize((gammao(m+1)/gammao(m))*a1,B);
a1 = quantize(kappab(m) + quantize(((f(m))'*bo(m))/(lambda*gammao(m)*xifo(m)),B),B);
kappab(m) = quantize((gamma(m+1)/gammao(m))*a1,B);
b(m+1) = quantize(bo(m) - quantize(kappab(m)*f(m),B),B);
f(m+1) = quantize(f(m) - quantize(kappaf(m)*bo(m),B),B);
r(m+1) = quantize(r(m) - quantize(kappa(m)*b(m),B),B);
end
eo(i) = quantize(r(M+1)/gamma(M+1),B);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -