⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 neuralnetworklayer.cpp

📁 这个学期我学习是神经网络课程,有很多的知识国内都不是很完善,而国外就有很大的进步,下面就是来自一本 <AI for Game>的电子版英文书.其中我就拿用面向对象写的C++类进行说明怎样
💻 CPP
字号:


//constructor
NeuralNetworkLayer::NeuralNetworkLayer()
{
     ParentLayer = NULL;
     ChildLayer = NULL;
     LinearOutput = false;
     UseMomentum = false;
      MomentumFactor = 0.9;
}

//initialize network
void NeuralNetworkLayer::Initialize(int NumNodes,
                                              NeuralNetworkLayer* parent,
                                               NeuralNetworkLayer* child)
{
     int     i, j;
     // 分配内存
     NeuronValues = (double*) malloc(sizeof(double) * NumberOfNodes);
     DesiredValues = (double*) malloc(sizeof(double) * NumberOfNodes);
     Errors = (double*) malloc(sizeof(double) * NumberOfNodes);

     if(parent != NULL)
     {
          ParentLayer = parent;
     }
     if(child != NULL)
     {
          ChildLayer = child;
          Weights = (double**) malloc(sizeof(double*) * NumberOfNodes);
          WeightChanges = (double**) malloc(sizeof(double*) * NumberOfNodes);
		  
          for(i = 0; i<NumberOfNodes; i++)
          {
               Weights[i] = (double*) malloc(sizeof(double) * NumberOfChildNodes);
               WeightChanges[i] = (double*) malloc(sizeof(double) * NumberOfChildNodes);
          }
          BiasValues = (double*) malloc(sizeof(double) * NumberOfChildNodes);
          BiasWeights = (double*) malloc(sizeof(double) * NumberOfChildNodes);
     } else {
          Weights = NULL;
          BiasValues = NULL;
          BiasWeights = NULL;
          WeightChanges = NULL;
     }
     // 确保所有归 0
     for(i=0; i<NumberOfNodes; i++)
     {
          NeuronValues[i] = 0;
          DesiredValues[i] = 0;
          Errors[i] = 0;
          if(ChildLayer != NULL)
               for(j=0; j<NumberOfChildNodes; j++)
               {
                    Weights[i][j] = 0;
                    WeightChanges[i][j] = 0;
               }
     }
     // Initialize the bias values and weights
     if(ChildLayer != NULL) 
          for(j=0; j<NumberOfChildNodes; j++)
          {
               BiasValues[j] = -1;
               BiasWeights[j] = 0;
          }
}

//clean up layer
void NeuralNetworkLayer::CleanUp(void)
{
     int i;
     free(NeuronValues);
     free(DesiredValues);
     free(Errors);
     if(Weights != NULL)
     {
          for(i = 0; i<NumberOfNodes; i++)
          {
               free(Weights[i]);
               free(WeightChanges[i]);
          }
          free(Weights);
          free(WeightChanges);
     }
	 
     if(BiasValues != NULL) 
	 	free(BiasValues);
	 
     if(BiasWeights != NULL) 
	 	free(BiasWeights);
}


void NeuralNetworkLayer::RandomizeWeights(void)
{
     int     i,j;
     int     min = 0;
     int     max = 200;
     int     number;
     srand( (unsigned)time( NULL ) );
     for(i=0; i<NumberOfNodes; i++)
     {
          for(j=0; j<NumberOfChildNodes; j++)
          {
               number = (((abs(rand())%(max-min+1))+min));
               if(number>max)
                    number = max;
               if(number<min)
                   number = min;
               Weights[i][j] = number / 100.0f - 1;
          }
     }
     for(j=0; j<NumberOfChildNodes; j++)
     {
               number = (((abs(rand())%(max-min+1))+min));
               if(number>max)
                    number = max;
               if(number<min)
                    number = min;
               BiasWeights[j] = number / 100.0f - 1;
      }
}

void NeuralNetworkLayer::CalculateNeuronValues(void)
{
     int i,j;
     double x;
     if(ParentLayer != NULL)
     {
          for(j=0; j<NumberOfNodes; j++)
          {
               x = 0;
               for(i=0; i<NumberOfParentNodes; i++)
               {
                    x += ParentLayer->NeuronValues[i] *
                          ParentLayer->Weights[i][j];
               }
               x += ParentLayer->BiasValues[j] *
                     ParentLayer->BiasWeights[j];
               if((ChildLayer == NULL) && LinearOutput)
                    NeuronValues[j] = x;
               else
                    NeuronValues[j] = 1.0f/(1+exp(-x));
          }
     }
}

void NeuralNetworkLayer::CalculateErrors(void)
{
     int i, j;
     double sum;
     if(ChildLayer == NULL) // output layer
     {
          for(i=0; i<NumberOfNodes; i++)
          {
                 Errors[i] = (DesiredValues[i] - NeuronValues[i]) *
                               NeuronValues[i] *
                               (1.0f - NeuronValues[i]);
          }
     } else if(ParentLayer == NULL) { // 输入层
          for(i=0; i<NumberOfNodes; i++)
          {
               Errors[i] = 0.0f;
          }
     } else { // 隐层
          for(i=0; i<NumberOfNodes; i++)
          {
               sum = 0;
               for(j=0; j<NumberOfChildNodes; j++)
               {
                    sum += ChildLayer->Errors[j] * Weights[i][j];
               }
               Errors[i] = sum * NeuronValues[i] *
                               (1.0f - NeuronValues[i]);
          }
     }
}

void NeuralNetworkLayer::AdjustWeights(void)
{
     int          i, j;
     double       dw;
     if(ChildLayer != NULL)
     {
          for(i=0; i<NumberOfNodes; i++)
          {
               for(j=0; j<NumberOfChildNodes; j++)
               {
                    dw = LearningRate * ChildLayer->Errors[j] *
                          NeuronValues[i];
                    if(UseMomentum)
                    {
                         Weights[i][j] += dw + MomentumFactor *
                                                WeightChanges[i][j];
                         WeightChanges[i][j] = dw;
                    } else {
                             Weights[i][j] += dw;
                    }
               }
          }
          for(j=0; j<NumberOfChildNodes; j++)
          {
               BiasWeights[j] += LearningRate *
                                      ChildLayer->Errors[j] *
                                      BiasValues[j];
          }
     }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -