⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 console_lib.cpp

📁 algorithm to resize an image
💻 CPP
📖 第 1 页 / 共 3 页
字号:
/*
 *********** change log ***************
 *2009 Jan 09: using TD with KNN
 *2009 Jan 09: Adding TEST section to system
 *2009 Jan 09: fixing bug : "KNearNeighbor>=KNearNeighborMax" to "KNearNeighbor>=KNearNeighborMin"
 *2009 Jan 18:Normalizing COG of Scaled down(to eleminating Noise) Training Images
 *2009 Jan 18: Using Nave Bayes Classifier instead of KKN and TD 
 * 
 * 
 * 
 *
 * 
 * 
 * 
 * 
 *
 * 
 * 
 * 
 * 
 */ 


#include "ltiException.h"
#include <fstream>
#include <cmath>
#include <unistd.h>
#include <string>
#include <cstdio>
//#include <iostream.h>
//#include <iostream>

#include <ltiJPEGFunctor.h>
#include <ltiBMPFunctor.h>
#include <ltiPNGFunctor.h>
#include <ltiRGBPixel.h>
#include <ltiHTypes.h>
#include <ltiMath.h>
#include <ltiModifier.h>
#include <ltiSplitImageToRGB.h>
#include <ltiSplitImageTorgI.h>
#include <ltiGeometricTransform.h>
#include <ltiPNGFunctor.h>
#include <ltiViewer.h>
#include <ltiFastViewer.h>
#include  <ltiKNNClassifier.h>
 #include <ltiLispStreamHandler.h>

#include "ltiTimer.h"
#include <ltiGtkServer.h>

#include <iostream>
#include <fstream>

//downsampling
#include <ltiDownsampling.h>
#include <ltiGaussKernels.h>
#include <ltiPoint.h>

//geometric features
#include <ltiContour.h>
#include <ltiRegionGrowing.h>
#include <ltiGeometricFeatures.h>

#include <ltiHiddenMarkovModel.h >
#include <ltiHmmTrainer.h >

//pca
#include <ltipca.h>
#include <ltiL2Distance.h>

#include <ltiGaussian.h> 
#include <ltiGaussDist.h >



//#define begin 1
//#define end 20
#define trainSet 70 //70%
#define devSet 15 //15%
#define testSet 15 //15%


 int TD_height;
 int TD_width;



class Piece
{
public:
	int X,Y,Width,Height;
	std::string name;
Piece(int x,int y,int w, int h, std::string strName);
Piece();
	
};

Piece::Piece(int x,int y,int w, int h, std::string strName)
{
	Piece::X=x;
	Piece::Y=y;
	Piece::Width=w;
	Piece::Height=h;
	Piece::name=strName;


}
Piece::Piece()
{
}


int main(int argc,char *argv[]) {
	
  try {

	  	int Xoffset=0,Yoffset=0;
	   Piece c[30],a[33],n[10];
	   bool noSave;
	   
	   
	   c[0]=Piece(1967,824,300,104,"01_Arak");
	   c[1]=Piece(1629,823,332,105,"02_Ardebil");
	   c[2]=Piece(1371,821,253,104,"03_Oroumieh");
	   c[3]=Piece(1096,820,270,104,"04_Esfehan");
	   c[4]=Piece(850,818,241,105,"05_Ahvaz");
	   c[5]=Piece(603,817,243,105,"06_Ilam");
	   c[6]=Piece(1967,974,300,104,"07_Bojnourd");
	   c[7]=Piece(1629,973,332,105,"08_BandarAbbas");
	   c[8]=Piece(1371,971,253,104,"09_Booshehr");
	   c[9]=Piece(1096,968,270,104,"10_Birjand");
	   c[10]=Piece(850,967,241,105,"11_Tabriz");
	   c[11]=Piece(602,966,243,105,"12_Tehran");
	   c[12]=Piece(1966,1124,300,104,"13_KhorramAbad");
	   c[13]=Piece(1629,1122,332,105,"14_Rasht");
	   c[14]=Piece(1371,1120,253,104,"15_Zahedan");
	   c[15]=Piece(1095,1119,270,104,"16_Zanjan");
	   c[16]=Piece(850,1116,241,105,"17_Sari");
	   c[17]=Piece(602,1115,243,105,"18_Semnan");
	   c[18]=Piece(1965,1271,300,104,"19_Sanandaj");
	   c[19]=Piece(1629,1269,332,105,"20_ShahreKord");
	   c[20]=Piece(1369,1268,253,104,"21_Shiraz");
	   c[21]=Piece(1094,1266,270,104,"22_Ghazvin");
	   c[22]=Piece(849,1264,241,105,"23_Ghom");
	   c[23]=Piece(601,1263,243,105,"24_Kerman");
	   c[24]=Piece(1965,1420,300,104,"25_KermanShah");
	   c[25]=Piece(1627,1418,332,105,"26_Gorgan");
	   c[26]=Piece(1369,1416,253,104,"27_Mashhad");
	   c[27]=Piece(1094,1414,270,104,"28_Hamedan");
	   c[28]=Piece(848,1413,241,105,"29_Yasuj");
	   c[29]=Piece(601,1412,243,105,"30_Yazd");
//parameters can be optimized; scalingFactor


	  	lti::loadBMP bmploader;
		lti::saveBMP bmpsaver;
		lti::channel8 img;
		
		//lti::image img ;
		lti::channel8 img2;
		lti::image downimg;

		lti::viewer view1;
		lti::viewer view2;







	 lti::regionGrowing segmenter;  // functor for segmentation

 

		
		
		std::string filenameInput,filenameOutput;
	  	//int begin,end,step;
		//std::cout<<"Enter beginning: ? ";
		//std::cin>>begin;
		//std::cout<<"Enter End: ? ";
		//std::cin>>end;

		//std::cout<<"Downscaling: 1/? ";
		//std::cin>>step;

		//dimention

		//int xDim=330,yDim=110;
 
 


int epoch= 200;
 int scalingFactor=50;
 double minerror=100.0;
int bestfact=-1,bestK=-1,bestthresh=-1,bestPcaDim=-1;


		lti::downsampling downsampler;       // downsampling functor
		lti::downsampling::parameters param; // downsampling parameters

	

/*
		int begin,end;
		std::cout<<"Enter begin: ? ";
		std::cin>>begin;

		std::cout<<"Enter end: ? ";
		std::cin>>end;


		int maxScale,minScale;
		std::cout<<"Enter min ScalingFactor <=14: ? ";
		std::cin>>minScale;

		std::cout<<"Enter max ScalingFactor >=1: ? ";
		std::cin>>maxScale;

*/		

		int MinThresh,MaxThresh,thresh=240;
	//	std::cout<<"Enter Min Threshhold >=0: ? ";
	//	std::cin>>MinThresh;

	//	std::cout<<"Enter Max Threshhold <=240: ? ";
	//	std::cin>>MaxThresh;

		int KNearNeighbor= 1, KNearNeighborMax= 10,KNearNeighborMin= 1;

		//std::cout<<"Enter Min Number of Nearest Neighbors(MinK): ? ";
		//std::cin>>KNearNeighborMin;
		//std::cout<<"Enter Max Number of Nearest Neighbors(MaxK): ? ";
		//std::cin>>KNearNeighborMax;

			char buff[40];
	sprintf(buff,"871029K%ito%i__NBC-COGnormal.txt",KNearNeighborMin,KNearNeighborMax,thresh);

    std::ofstream LOG(buff);
		

	
extern int TD_height;
extern int TD_width;

const int width=128;
const int height=128;

const int beginTrain= 0;
const int endTrain=width*height -1;

//const int beginDev= endTrain+1;
//const int endDev= endTrain+((end-begin+1)*devSet)/100;

//const int beginTest= endDev+1;
//const int endTest= end;

//	     bmploader.load("E_C_R_000001_1_c_18_Semnan.bmp",img);
//		 lti::point fact=lti::point(10,10);
//
//		 // a gaussian kernel to use before the downsampling
//	     lti::gaussKernel2D <lti::channel::value_type> gkernel;
//
//		 param.setKernel(gkernel);  // use the gaussian kernel
//		 param.factor=fact;
  // 
//	/	 downsampler.setParameters(param);  // use the given parameters
//		 
//		 downsampler.apply(img,downimg);
//		
//		 bmpsaver.save("d.bmp",downimg);
		
	//	for( thresh=MaxThresh;thresh>=MinThresh && thresh>0;thresh-=10)
		  //for( scalingFactor=minScale;scalingFactor<=maxScale && scalingFactor>0;scalingFactor+=1)
		  // for( scalingFactor=minScale;scalingFactor<=maxScale && scalingFactor>0;scalingFactor+=1)
		  
		

			

		lti::point fact=lti::point(scalingFactor,scalingFactor);

		// a gaussian kernel to use before the downsampling
		lti::gaussKernel2D <lti::channel::value_type> gkernel(scalingFactor,scalingFactor*10);

		 param.setKernel(gkernel);  // use the gaussian kernel
		 param.factor=fact;
   
		 downsampler.setParameters(param);  // use the given parameters
		 const int step=scalingFactor;
		 
		 int xDim= (330%scalingFactor==0?330/scalingFactor:330/scalingFactor+1);
		int yDim= (110%scalingFactor==0?110/scalingFactor:110/scalingFactor+1);
		const int featureNum=4;
		
		double *inDataTrain=new double[(endTrain-beginTrain+1)*256*4];
		
		int *idsDataTrain=new int[(endTrain-beginTrain+1)*256]; // and the respective ids

	//	double *inDataDev=new double[(endDev-beginDev+1)*30*(xDim*yDim)];
		
	//	int *idsDataDev=new int[(endDev-beginDev+1)*30]; // and the respective ids

		int indexer=0;

		int r,g,b;

		int COGy,COGx,xOffset,yOffset;
		int newCOGx=xDim/2;
		int newCOGy=yDim/2;


		
		LOG<<std::cout<<"Start Reading Images... "<<std::endl;
		//LOG<<"******ScalingFactor: "<<scalingFactor<<" ****** xDim: "<<xDim<<" yDim: "<<yDim<<"***"<<std::endl;
		
		 	
		

		//for(int count=beginTrain;count<=endTrain;count++)
	

		//	char buff[16];
//
//
///			if(count<10)
//				sprintf(buff,"00000%i",count);
//			else if(count<100)
//				sprintf(buff,"0000%i",count);
//			else if(count<1000)
//				sprintf(buff,"000%i",count);
//


//				for(int cIndex=0 ;cIndex<30;cIndex++)
				{
//					filenameInput="";
//					filenameOutput="r";
//
//					filenameInput.append(buff);
//					filenameInput.append("_");
//					
//
//				filenameInput.append(c[cIndex].name);
//				filenameInput.append(".bmp");
//				std::cout<<std::endl<<"Train:  Loading File: "<<filenameInput<<" ..."<<std::endl; 
				//std::endl<<"Loading File: "<<filenameInput<<" ..."<<std::endl; 
				filenameInput="1.bmp";
				lti::vector<lti::rgbPixel> colors;
				if(	!bmploader.load(filenameInput,img,colors))
				{
					
					std::cout<<std::endl<<"****Non Existing File: "<<filenameInput<<" ..."<<std::endl; 
					//continue;
				}
				else
				{
					//lti::channel8 mask,downmask;
					///segmenter.apply(img,mask);     // get a mask to differentiate background
															// and object.
				    //char buffnum[16];
					//sprintf(buffnum,"000%i",scalingFactor);
//					
//					
//					filenameOutput.append(buffnum);
//					filenameOutput.append(filenameInput);
//					
//				
//
//						std::cout<<"Downsampling..."<<std::endl;
//					downsampler.apply(mask,downmask);
					//view1.show(downmask);
					//int t;
					//std::cin>>t;
					//bmpsaver.save("my.bmp",downmask);

					//***********calculating COG****************//
//					lti::areaPoints ap;
//						ap.getFromMask(downmask);
//						
//						lti::dvector dv;

						//due to the source code it needs to define the outer boundary to assume all points for calculations
//						lti::geometricFeatures::parameters param;
						
//						param.boundaryDefinition= lti::geometricFeatures::parameters::eBoundaryDefinition::OuterBoundary;
//						lti::geometricFeatures gf(param);
//						gf.apply(ap,dv);
//						COGy=int(dv.at(3));
//						COGx=int(dv.at(2));
					
						//Calculated above before
					//	int oldCOGx=xDim/2;
					//	int oldCOGy=yDim/2;

//						xOffset=newCOGx-COGx;
//						yOffset=newCOGy-COGy;
						
						
//						lti::channel8 normalImg=lti::channel8(yDim,xDim,(lti::ubyte)0);
					LOG<<"Training"<<std::endl;
indexer=0;
						for(int x=0;x<width;x++)
			for(int y=0;y<height;y++)
		{

						int i,j,k=0;
						for(j=y-1;j<=y+1;j+=2)
						for( i=x-1;i<=x+1;i+=2)
							if(i!=x || j!=y)
						{
							if((j>=0)&& (i>=0) && (i<width) && (j<height))
							inDataTrain[indexer*4+k]=img[j][i];
							else
								inDataTrain[indexer*4+k]=img[y][x];//to avoid disturbing distribution in BC //can be -1 in knn

							
							LOG<<inDataTrain[indexer*4+k]<<" ";
							k++;
						}
						//bmpsaver.save("my.bmp",normalImg);
						


				

						
				

					
					

						

					idsDataTrain[indexer]=img[y][x];
						

						LOG<<"          "<<idsDataTrain[indexer]<<"  "<<img[y][x]<<std::endl;
						indexer++;
				}//end looping on image pixels

			


		const  trainNum=indexer;
	lti::dmatrix inTrain(trainNum,4,inDataTrain);          // training vectors    
		
    lti::ivector idsTrain(trainNum,idsDataTrain);
/*
indexer=0;

		for( count=beginDev;count<=endDev;count++)
		{
			char buff[16];


			if(count<10)
				sprintf(buff,"00000%i",count);
			else if(count<100)
				sprintf(buff,"0000%i",count);
			else if(count<1000)
				sprintf(buff,"000%i",count);



			
			
				for(int cIndex=0 ;cIndex<30;cIndex++)
				{
					
					filenameInput="";
					filenameOutput="r";
					filenameInput.append(buff);
					filenameInput.append("_");
					

				filenameInput.append(c[cIndex].name);
				filenameInput.append(".bmp");
				std::cout<<std::endl<<"Dev: Loading File: "<<filenameInput<<" ..."<<std::endl; 
				

				if(	!bmploader.load(filenameInput,img))
				{
					//LOG<<std::endl<<"****Non Existing File: "<<filenameInput<<" ..."<<std::endl; 
					std::cout<<std::endl<<"****Non Existing File: "<<filenameInput<<" ..."<<std::endl; 
					continue;
				}
				else
				{
					lti::channel8 mask,downmask;
					segmenter.apply(img,mask);     // get a mask to differentiate background
															// and object.
				    char buffnum[16];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -