📄 c_pso.m
字号:
function [m_pattern]=C_PSO(m_pattern,patternNum)
disType=DisSelDlg();%获得距离计算类型
[centerNum iterNum]=InputClassDlg();%获得类中心数和最大迭代次数
prticleNum=200;%初始化粒子数目
%初始化中心和速度
global Nwidth;
for i=1:centerNum
m_center(i).feature=zeros(Nwidth,Nwidth);
m_center(i).prticleNum=0;
m_center(i).index=i;
m_velocity(i).feature=zeros(Nwidth,Nwidth);
for i=1:prticleNum
Particle(i).location=m_centerNum;%粒子各中心
Particle(i).velocity=m_velocity;%粒子各中心速度
Particle(i).fitness=0;%适应度
P_id(i).location=m_center;%粒子最优中心
P_id(i).velocity=m_velocity;%粒子最优速度
P_id(i).fitness=0;%粒子最优适应度
end
P_gd.location=m_center;%全局粒子最优中心
P_gd.velocity=m_velocity;%全局粒子最优速度
P_gd.fitness=0;%粒子全局最优适应度
P_gd.string=zeros(1,prticleNum);
ptDitrib=zeros(prticleNum,prticleNum);%初始化粒子分布矩阵
for i=1:prticleNum %生成随机粒子分布矩阵
ptDitrib(i,:)=randperm(prticleNum);
for j=1:prticleNum
if(ptDitrib(i,j)>centerNum)
ptDitrib(i,j)=fix(rand*centerNum+1);
end
end
end
%生成初始粒子群
for i=1:prticleNum
for j=1:prticleNum
m_pattern(j).category=ptDitrib(i,j);
end
for j=1:centerNum
m_center(j)=CalCenter(m_center(j),m_pattern,patternNum);
end
Particle(i).locatoin=m_center;
end
%初始化参数
w_max=1;
w_min=0;
h1=2;
h2=2;
for iter=1:iterNum
%计算粒子适应度
for i=1:patternNum
temp=0;
for j=1:patternNum
temp=temp+GetDistance(m_pattern(j),Particle(i).location(ptDitrib(i,j),disType));
end
if(temp==0) %最优解,直接退出
iter=iterNum+1;
break;
end
Particle(i).fitness=1/temp;
end
if(iter>iterNum)
break;
end
w=w_max-iter*(w_max-w_min)/iterNum;%更新权重系数
for i=1:particleNum %更新P_id,P_gd
if(Particle(i).fitness>P_id(i).fitness)
P_id(i).fitness=Particle(i).fitness;
P_id(i).location=Particle(i).location;
P_id(i).velocity=Particle(i).velocity;
if(Particle(i).fitness>P_gd.fitness)
P_gd.fitness=Particle(i).fitness;
P_gd.location=Particle(i).location;
P_gd.velocity=Particle(i).velocity;
P_gd.string=ptDitrib(i,:);
end
end
end
%更新粒子速度,位置
for i=1:particleNum
for j=1:centerNum
Particle(i).velocity(j).feature=w*Particle(i).velocity(j).feature
+h1*rand(Nwidth,Nwidth).*(P_id(i).location(j).feature-Particle(i).location(j).feature)
+h2*rand(Nwidth,Nwidth).*(P_gd.location(j).feature-Particle(i).location(j).feature);
end
end
%最邻近聚类
for i=1:particleNum
for j=1:patternNum
min=inf;
for k=1:centerNum
tempDis=GetDistance(m_pattern(j),Particle(i).location(k),disType);
if(tempDis<min)
min=tempDis;
m_pattern(j).category=k;
ptDitrib(i,j)=k;
end
end
end
%重新计算聚类中心
for j=1:centerNum
Particle(i).location(j)=CalCenter(Particle(i).location(j),m_parttern,patternNum);
end
end
for i=1:partternNum
m_pattern(i).category=P_gd.string(1,i);
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -