📄 pow10_round.m
字号:
function [A2, A_str, real_digitsL, real_digitsR, imag_digitsL, imag_digitsR]=pow10_round(A, pow10, flag, mult)
% % pow10_round: Round a numeric array to a Specified Digits Place
% %
% % Syntax;
% %
% % [A2, A_str, real_digitsL, real_digitsR, imag_digitsL,...
% % imag_digitsR]=sd_round(A, N, flag);
% %
% % *********************************************************************
% %
% % Description
% %
% % pow10_round.m stands for "Power of 10 Round".
% %
% % This program rounds a 2-d matrix of numbers to a a specified digits
% % place. By specifing the power of 10 so that the furthest digits
% % place of the right is specified.
% %
% % This program support five different styles of rounding the last digit:
% % to the nearest integer, up, down, toward zero, and away from zero.
% %
% % This program supports real and complex numbers.
% %
% % The program outputs the rounded array, a cell string of the
% % rounded matrix the number of digits, to the left and right of the
% % decimal place, and converts the rounded array to a cell array of
% % strings.
% %
% % This program is useful for presenting scientific data that
% % requires rounding to a specified digits place for publication.
% %
% % *********************************************************************
% %
% % Input variables
% %
% % A is the input matrix of number to be rounded.
% % default is empty array A=[];.
% %
% % pow10 is the power of ten to round the numbers.
% % pow10 specifies the digits place for rounding,
% % starting from the decimal point and counting to the left.
% % default is pow10=0;
% %
% % pow10=-2 round the hundreths digit.
% % pow10=-1 round the tenths digit.
% % pow10=0 round the ones digit.
% % pow10=1 round the tens digit.
% %
% % flag specifiies the style of rounding.
% % This program supports four different styles of rounding.
% %
% % flag == 1 rounds to the nearest integer
% % flag == 2 rounds up
% % flag == 3 rounds down
% % flag == 4 rounds toward zero
% % flag == 5 rounds away from zero
% %
% % otherwise round to the nearest integer
% % default is round to the nearest integer
% %
% % mult is a whole number. The program rounds the last digit to mult.
% % It is preferred that mult be between 1 and 9; however, all whole
% % numbers >= 1 are valid input. The prorgam rounds mult to the
% % nearest integer and makes sure the value is at least 1.
% % default is mult=1;
% %
% % *********************************************************************
% %
% % Output variables
% %
% % A2 is the rounded numeric array.
% %
% % A_str % The rounded array is converted to a cell
% % % string format with the specified rounding and showing
% % % the trainling zeros.
% % % This is convenient for publishing tables in a tab
% % % delimited string format
% %
% % real_digitsL % The number of real digits to the left of the decimal
% % % point
% %
% % real_digitsR % The number of real digits to the right of the decimal
% % % point
% %
% % imag_digitsL % The number of imaginary digits to the left of the
% % % decimal point
% %
% % imag_digitsR % The number of imaginary digits to the right of the
% % % decimal point
% %
% % *********************************************************************
%
% Example1='';
%
% D1=pi; % Double or Complex two dimensional array of numbers
% pow10=-2; % Round to the hundreths place
%
% % P1 should be 3.14 which has 3 significant digits.
%
% [P1, P1_str]=pow10_round(D1, pow10);
%
%
% Example2='';
%
% pow10=-3; % round to the thousandths digit
% D2=10.^randn(10, 100); % D2 is the unrounded array
%
% % P2 is the rounded array
% % of real numbers
% % P2_str is the cell array of strings of
% % rounded real numbers
%
% [P2, P2_str]=pow10_round(D2, pow10);
%
%
% Example3='';
%
% D3=log10(randn(10, 100)); % D3 is an unrounded array of complex
% % numbers
% [P3, P3_str]=pow10_round(D3, -3);
%
% % P3 is the rounded array of
% % complex numbers
% % P3_str is the cell array of strings of
% % rounded complex numbers
%
%
% Example4='';
%
% D4=pi*10^(-5); % Double or Complex two dimensional array of numbers
% pow10=-7; % Round to the hundreths place
%
% % P1 should be 0.0000314 which has 3 significant digits.
%
% [P1, P1_str]=pow10_round(D4, pow10);
%
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% % Program Written by Edward L. Zechmann
% %
% % date 18 August 2008 Added option to round last digit to a
% % multiple of a given number.
% % Fixed a bug in rounding powers of 10.
% %
% % modified 25 August 2008 Updated Comments
% %
% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% % Please Feel Free to Modify This Program
% %
% % See Also: pow10_round, round, ceil, floor, fix, fix2, round2, roundd
% %
flag1=0;
if (nargin < 1 || isempty(A)) || ~isnumeric(A)
flag1=1;
A=[];
A2=[];
warningdlg('Error in p_round did not Input Matrix A');
end
if isempty(A)
flag1=1;
A=[];
A2=[];
warningdlg('Error in p_round Matrix A is Empty');
end
if (nargin < 2 || isempty(pow10)) || ~isnumeric(pow10)
pow10=0;
end
% power of 10 for rounding
% must be a integer
% pow10 specifies the digits place for rounding
pow10=round(pow10);
if (nargin < 3 || isempty(flag)) || ~isnumeric(flag)
flag=1;
end
if (nargin < 4 || isempty(mult)) || ~isnumeric(mult)
mult=1;
end
mult=round(mult);
if mult < 1
mult=1;
end
if ~isempty(A)
real_digitsL=zeros(size(A));
real_digitsR=zeros(size(A));
imag_digitsL=zeros(size(A));
imag_digitsR=zeros(size(A));
else
real_digitsL=[];
real_digitsR=[];
imag_digitsL=[];
imag_digitsR=[];
end
if isequal(flag1, 0)
if isnumeric(A)
if isreal(A)
% Digit furthest to the left of the decimal point
D1=ceil(log10(abs(A)));
buf1=D1( abs(A)-10.^D1 == 0)+1;
D1( abs(A)-10.^D1 == 0)=buf1;
% Number of digits to the left of the decimal place
real_digitsL=max(D1, 0);
real_digitsL(A==0)=0;
% rounding factor
dec=10.^(-pow10);
% Number of digits to the right of the decimal place
real_digitsR=max(-pow10, 0).*ones(size(A));
% Rounding Computation
% This program supports four different styles of rounding.
% flag == 1 rounds to the nearest integer
% flag == 2 rounds up
% flag == 3 rounds down
% flag == 4 rounds toward zero
% flag == 5 rounds away from zero
% otherwise round to the nearest integer
buf=dec./mult;
switch flag
case 1
A2=1./buf.*round(buf.*A);
case 2
A2=1./buf.*ceil(buf.*A);
case 3
A2=1./buf.*floor(buf.*A);
case 4
A2=1./buf.*fix(buf.*A);
case 5
A2=sign(A)./buf.*ceil(buf.*abs(A));
otherwise
A2=1./buf.*round(buf.*A);
end
A2(A==0)=0;
else
% Round the real part
Ar=real(A);
% Digit furthest to the left of the decimal point
D1=ceil(log10(abs(Ar)));
buf1=D1( abs(Ar)-10.^D1 == 0)+1;
D1( abs(Ar)-10.^D1 == 0)=buf1;
% Number of digits to the left of the decimal place
real_digitsL=max(D1, 0);
real_digitsL(Ar==0)=0;
% rounding factor
dec=10.^(-pow10);
% Number of digits to the right of the decimal place
real_digitsR=max(-pow10, 0).*ones(size(A));
% Rounding Computation
% This program supports four different styles of rounding.
% flag == 1 rounds to the nearest integer
% flag == 2 rounds up
% flag == 3 rounds down
% flag == 4 rounds toward zero
% flag == 5 rounds away from zero
% otherwise round to the nearest integer
buf=dec./mult;
switch flag
case 1
A2r=1./buf.*round(buf.*Ar);
case 2
A2r=1./buf.*ceil(buf.*Ar);
case 3
A2r=1./buf.*floor(buf.*Ar);
case 4
A2r=1./buf.*fix(buf.*Ar);
case 5
A2r=sign(Ar)./buf.*ceil(buf.*abs(Ar));
otherwise
A2r=1./buf.*round(buf.*Ar);
end
A2r(Ar==0)=0;
% Round the imaginary part
Ai=imag(A);
% Digit furthest to the left of the decimal point
D1=ceil(log10(abs(Ai)));
buf1=D1( abs(Ai)-10.^D1 == 0)+1;
D1( abs(Ai)-10.^D1 == 0)=buf1;
% Number of digits to the left of the decimal place
imag_digitsL=max(D1, 0);
imag_digitsL(Ai==0)=0;
% rounding factor
dec=10.^(-pow10);
% Number of digits to the right of the decimal place
imag_digitsR=max(-pow10, 0).*ones(size(A));
% Rounding Computation
% This program supports five different styles of rounding.
% flag == 1 rounds to the nearest integer
% flag == 2 rounds up
% flag == 3 rounds down
% flag == 4 rounds toward zero
% flag == 5 rounds away from zero
% otherwise round to the nearest integer
buf=dec./mult;
switch flag
case 1
A2i=1./buf.*round(buf.*Ai);
case 2
A2i=1./buf.*ceil(buf.*Ai);
case 3
A2i=1./buf.*floor(buf.*Ai);
case 4
A2i=1./buf.*fix(buf.*Ai);
case 5
A2i=sign(Ai)./buf.*ceil(buf.*abs(Ai));
otherwise
A2i=1./buf.*round(buf.*Ai);
end
A2i(Ai==0)=0;
% Add the real and imaginary parts together
A2=A2r+i*A2i;
end
else
warningdlg('Error in p_round Input Matrix A is not numeric');
A2=A;
end
end
% % Convert the rounded array to string format with specified
% % number of significant digits.
[m1, n1]=size(A);
A_str=cell(size(A));
rtd=round(real_digitsL+real_digitsR);
itd=round(imag_digitsL+imag_digitsR);
% Output the cell array of strings if it is in the output argument list
if nargout > 1
% This code formats the rounded numbers into a cell array
% of strings.
if isreal(A)
for e1=1:m1
for e2=1:n1;
aa2=num2str(A2(e1, e2), ['%', int2str(rtd(e1, e2)), '.', int2str(real_digitsR(e1, e2)), 'f' ]);
N=min([1, rtd(e1, e2)]);
if length(aa2) < N
aa2=num2str(A2(e1, e2),['%', int2str(N), '.', int2str(N), 'f']);
end
A_str{e1, e2}=aa2;
end
end
else
for e1=1:m1
for e2=1:n1;
if imag(A2(e1, e2)) >= 0
aa=' + ';
else
aa=' - ';
end
aa1=num2str(real(A2(e1, e2)), ['%', int2str(rtd(e1, e2)),'.', int2str(real_digitsR(e1, e2)), 'f' ]);
N=min([1, rtd(e1, e2)]);
if length(aa1) < N
aa1=num2str(real(A2(e1, e2)),['%', int2str(N), '.', int2str(N), 'f']);
end
aa2=num2str(abs(imag(A2(e1, e2))), ['%', int2str(itd(e1, e2)),'.', int2str(imag_digitsR(e1, e2)), 'f' ]);
N=min([1, itd(e1, e2)]);
if length(aa2) < N
aa2=num2str(abs(imag(A2(e1, e2))),['%', int2str(N), '.', int2str(N), 'f']);
end
A_str{e1, e2}= [aa1, aa, aa2, 'i'];
end
end
end
else
A_str={};
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -