📄 print_channel_stats.m
字号:
function [fid, mean_vals, max_num_channels, max_num_diff_channels]=print_channel_stats(s, fid, flag, max_channels, num_metrics, num_vars, num_files, stat_to_get, stat_to_get2, num_channels_a, sum_num_channels_a, num_diff_channels_a, ratio_metrics, round_kind, round_digits)
% % print_channel_stats: Print the ststistics for each channel for the impulsive sound table
% %
% % Syntax:
% %
% % [fid, mean_vals, max_num_channels, max_num_diff_channels]=print_channel_stats(s, fid, flag, max_channels, num_metrics, num_vars, num_files, stat_to_get, stat_to_get2, num_channels_a, sum_num_channels_a, num_diff_channels_a, ratio_metrics, round_kind, round_digits);
% %
% % *****************************************************************
% %
% % Description:
% %
% % This program takes the output from the Impulsive_Noise_Meter and displays the
% % the impulsive Noise metrics in a table with a standardized format.
% %
% % The input and output variables are described below.
% %
% %
% % *****************************************************************
% %
% % Input Variables
% %
% % s={}; % is the data structure created using the
% % % Impulsive_Noise_Meter.
% % % default is load shock_tube.
% %
% % fid=fopen('test.txt', 'w');
% % % is the file identifier for saving the table
% % % to a tab delimited text file.
% %
% % flag=3; % is a scalar which specifies which data are printed.
% % % The absolute values of the metrics can be printed.
% % % The difference in metrics between two channels can be
% % % printed.
% %
% % flag=1; print absolute stats only
% % flag=2; print difference stats only
% % flag=3; print both absolute and difference stats
% % if flag does not equal 1, 2, or 3 then print both absolute and
% % difference stats.
% %
% % max_channels=1; % is the number of channels to be processed.
% % % The default is max_channels=1;
% %
% % num_metrics=10; % is the number of metrics to be processed.
% % % The default is num_metrics=10;
% %
% % num_vars=1; % is the number of variables to be processed.
% % % The default is num_vars=1;
% %
% % num_files=1; % is the number of files of data metrics stored in s.
% %
% % stat_to_get=(1:8); % is a vector or constant stipulating which
% % % metric to display in the table.
% % %
% % % Any combination of the following stats can be
% % % displayed by placing the index fo the stat in
% % % the desired order.
% % %
% % % stat_to_get=1; % Arithmetic Mean
% % % stat_to_get=2; % Robust Mean
% % % stat_to_get=3; % Standard Deviation
% % % stat_to_get=4; % 95% Confidence Interval
% % % stat_to_get=5; % Median
% % % stat_to_get=6; % Median Index
% % % stat_to_get=7; % Minimum
% % % stat_to_get=8; % Maximum
% % %
% % % default is stat_to_get=1;
% % % which return all of the stats,
% % % from mean to maximum!
% %
% % stat_to_get2=1; % is a scalar similar to stat_to_get but it is for the
% % % channel and overall statistics.
% % % The default is stat_to_get2=1;
% %
% % num_channels_a=ones(num_files, num_vars);
% %
% %
% % sum_num_channels_a=ones(num_files, num_vars);
% %
% %
% % num_diff_channels_a=zeros(num_files, num_vars);
% %
% % ratio_metrics=[3, 4, 5, 20]; % is an array of indices of metrics for
% % % the diff_chans array that are
% % % calculated as ratios instead of
% % % differences
% %
% % round_kind=1; % Array of values one element for the rta array
% % % and one element for each varargin array
% % % (see example)
% % % 1 round to specified number of significant
% % % digits
% % %
% % % 0 round to specified digits place
% % %
% % % default is round_kind=1;
% %
% % round_digits=3; % Array of values one element for the rta array
% % % and one element for each varargin array
% % % (see example)% Type of rounding depends on round_kind
% % %
% % % if round_kind==1 number of significant digits
% % % if round_kind==0 specified digits place
% % %
% % % default is round_digits=3;
% %
% % *****************************************************************
% %
% % Output Variables
% %
% % fid is the file identifier it is both an input and an output incase it
% % changes during processing.
% %
% % mean_vals is the cell array of mean_vals across the files for each channel
% % and each variable.
% %
% % max_num_channels is the maximum number of channels that exist for any
% % file or variable.
% %
% % max_num_diff_channels is the maximum number of channels that are
% % specified to be used in calculating the differnece
% % between two channels. The channels are paired so that
% % the differences are always between two paired channels.
% %
% % *****************************************************************
% %
% Example='s';
%
% % This is an example using shock tube data! The data compares two
% % data acquisition rates.
%
% % An example which outputs the mean of the metrics.
%
% load shock_tube;
% stat_to_get=1;
% fileout
% [bb_table, bb2]=make_table_compare_systems(s, stat_to_get, fileout);
%
%
% % An example which outputs all of the metrics.
%
% load shock_tube;
% stat_to_get=[1:7];
% fileout
% [bb_table, bb2]=make_table_compare_systems(s, stat_to_get, fileout);
%
%
%
% % *****************************************************************
% %
% %
% % Subprograms
% %
% %
% % List of Dependent Subprograms for
% % print_channel_stats
% %
% %
% % Program Name Author FEX ID#
% % 1) genHyper Ben Barrowes 6218
% % 2) LMSloc Alexandros Leontitsis 801
% % 3) m_round
% % 4) pow10_round
% % 5) sd_round
% % 6) splat_cell
% % 7) t_alpha
% % 8) t_confidence_interval
% % 9) t_icpbf
% %
% %
% % *****************************************************************
% %
% % Written by Edward L. Zechmann
% %
% % date 1 September 2008
% %
% % modified 10 September 2008 Updated comments.
% %
% % modified 18 January 2009 Updated to include rounding.
% %
% %
% % *****************************************************************
% %
% % Please feel free to modify this code.
% %
% % See Also: Impulsive_Noise_Meter, Continuous_Sound_and_Vibrations_Analysis
% %
if (nargin < 1 || isempty(s)) || ~iscell(s)
s={};
load shock_tube;
end
if (nargin < 2 || isempty(fid)) || ~isnumeric(fid)
fid=fopen('test.txt', 'w');
end
if (nargin < 3 || isempty(flag)) || ~isnumeric(flag)
flag=3;
end
if (nargin < 4 || isempty(max_channels)) || ~isnumeric(max_channels)
max_channels=1;
end
if (nargin < 5 || isempty(num_metrics)) || ~isnumeric(num_metrics)
num_metrics=10;
end
if (nargin < 6 || isempty(num_vars)) || ~isnumeric(num_vars)
num_vars=1;
end
if (nargin < 7 || isempty(num_files)) || ~isnumeric(num_files)
num_files=1;
end
if (nargin < 8 || isempty(stat_to_get)) || ~isnumeric(stat_to_get)
stat_to_get=(1:8);
end
if (nargin < 9 || isempty(stat_to_get2)) || ~isnumeric(stat_to_get2)
stat_to_get2=1;
end
if (nargin < 10 || isempty(num_channels_a)) || ~isnumeric(num_channels_a)
num_channels_a=ones(num_files, num_vars);
end
if (nargin < 11 || isempty(sum_num_channels_a)) || ~isnumeric(sum_num_channels_a)
sum_num_channels_a=ones(num_files, num_vars);
end
if (nargin < 12 || isempty(num_diff_channels_a)) || ~isnumeric(num_diff_channels_a)
num_diff_channels_a=zeros(num_files, num_vars);
end
if (nargin < 13 || isempty(ratio_metrics )) || ~isnumeric(ratio_metrics )
ratio_metrics=1;
end
if (nargin < 14 || isempty(round_kind)) || ~isnumeric(round_kind)
round_kind=1;
end
if (nargin < 15 || isempty(round_digits)) || ~isnumeric(round_digits)
round_digits=3;
end
% Determine the length of the one-dimensional rounding arrays.
num_kinds=length(round_kind);
num_digits=length(round_digits);
% Print the Mean averaged over the files for each channel
mean_vals=cell(max_channels, num_metrics*num_vars);
max_num_channels=0;
max_num_diff_channels=0;
for e1=1:num_files;
for e3=1:num_vars; % Number of Variables (Number of Data Acquisition Systems)
max_num_channels=max([max_num_channels num_channels_a(e1, e3)]);
max_num_diff_channels=max([max_num_diff_channels num_diff_channels_a(e1, e3)]);
end
end
for e2=1:max_channels; % Channels
if e2 == 1
fprintf(fid, '%s\t\t',[' ', s{1,1}.stats_description{stat_to_get2}, ' for Each Channel']);
else
fprintf(fid, '\t\t');
end
switch flag
case 1
if e2 <= max_num_channels
fprintf(fid, '%s\t\t', ['Channel ' num2str(e2)]);
end
case 2
if e2 <= max_num_diff_channels
fprintf(fid, '%s\t\t', ['Diff Channel ' num2str(s{e1,e3}.diff_chan(2*e2-1)), ' - ', num2str(s{e1,e3}.diff_chan(2*e2))]);
end
case 3
if e2 <= max_num_channels
fprintf(fid, '%s\t\t', ['Channel ' num2str(e2)]);
elseif e2-max_num_channels <= max_num_diff_channels
fprintf(fid, '%s\t\t', ['Diff Channel ' num2str(s{e1,e3}.diff_chan(2*(e2-max_num_channels)-1)), ' - ', num2str(s{e1,e3}.diff_chan(2*(e2-max_num_channels)))]);
end
otherwise
if e2 <= max_num_channels
fprintf(fid, '%s\t\t', ['Channel ' num2str(e2)]);
elseif e2-max_num_channels <= max_num_diff_channels
fprintf(fid, '%s\t\t', ['Diff Channel ' num2str(s{e1,e3}.diff_chan(2*(e2-max_num_channels)-1)), ' - ', num2str(s{e1,e3}.diff_chan(2*(e2-max_num_channels)))]);
end
end
cc=cell(num_files, 1);
for e4=1:num_metrics; % Data Metrics
for e3=1:num_vars; % Number of Variables (Number of Data Acquisition Systems)
cc=cell(num_files, 1);
for e1=1:num_files; % Data files
num_channels=num_channels_a(e1, e3);
num_diff_channels=num_diff_channels_a(e1, e3);
sum_num_channels=sum_num_channels_a(e1, e3);
if sum_num_channels > 0
switch flag
case 1
if e2 <= num_channels
cc{e1}=s{e1,e3}.stats_of_metrics(e4, e2, stat_to_get);
end
case 2
if e2 <= num_diff_channels
cc{e1}=s{e1,e3}.diff_stats_of_metrics(e4, e2, stat_to_get);
end
case 3
if e2 <= num_channels
cc{e1}=s{e1,e3}.stats_of_metrics(e4, e2, stat_to_get);
elseif e2-num_channels <= num_diff_channels
cc{e1}=s{e1,e3}.diff_stats_of_metrics(e4, e2-num_channels, stat_to_get);
end
otherwise
if e2 <= num_channels
cc{e1}=s{e1,e3}.stats_of_metrics(e4, e2, stat_to_get);
elseif e2-num_channels <= num_diff_channels
cc{e1}=s{e1,e3}.diff_stats_of_metrics(e4, e2-num_channels, stat_to_get);
end
end
end
end
[buf2, num_files_not_empty]=splat_cell(cc);
if ~isempty(buf2)
switch stat_to_get2
case 1
buf2=mean(buf2);
case 2
buf2=LMSloc(buf2);
case 3
buf2=std(buf2);
case 4
[buf2]=t_confidence_interval(buf2, 0.95);
case 5
buf2=median(buf2);
case 6
medianrt=median(buf2);
[mbuf buf2]=min(abs(buf2-medianrt));
case 7
buf2=min(buf2);
case 8
buf2=max(buf2);
otherwise
buf2=LMSloc(buf2);
end
if num_kinds >= e4 && logical(num_digits >= e4)
rk=round_kind(e4);
rd=round_digits(e4);
else
rk=1;
rd=3;
end
if ismember(stat_to_get2, [3, 4])
rk=1;
rd=3;
end
if (isequal(flag, 2) || (isequal(flag, 3) && logical(e2 > num_channels))) && ismember(e4, ratio_metrics)
rk=1;
rd=3;
end
[A2, A_str]=m_round(buf2, rk, rd);
mean_vals{e2, num_vars*(e4-1)+e3 }=A2;
fprintf(fid, '%s\t', A_str{1,1});
else
fprintf(fid, '\t');
end
end
fprintf(fid, '\t');
end
fprintf(fid, '%s\t', ['Number of files ' num2str(num_files_not_empty)]);
fprintf(fid, '\r\n');
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -