📄 snmp-framework-mib.txt
字号:
SNMP-FRAMEWORK-MIB DEFINITIONS ::= BEGINIMPORTS MODULE-IDENTITY, OBJECT-TYPE, OBJECT-IDENTITY, snmpModules FROM SNMPv2-SMI TEXTUAL-CONVENTION FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF;snmpFrameworkMIB MODULE-IDENTITY LAST-UPDATED "200210140000Z" ORGANIZATION "SNMPv3 Working Group" CONTACT-INFO "WG-EMail: snmpv3@lists.tislabs.com Subscribe: snmpv3-request@lists.tislabs.com Co-Chair: Russ Mundy Network Associates Laboratories postal: 15204 Omega Drive, Suite 300 Rockville, MD 20850-4601 USA EMail: mundy@tislabs.com phone: +1 301-947-7107 Co-Chair & Co-editor: David Harrington Enterasys Networks postal: 35 Industrial Way P. O. Box 5005 Rochester, New Hampshire 03866-5005 USA EMail: dbh@enterasys.com phone: +1 603-337-2614 Co-editor: Randy Presuhn BMC Software, Inc. postal: 2141 North First Street San Jose, California 95131 USA EMail: randy_presuhn@bmc.com phone: +1 408-546-1006 Co-editor: Bert Wijnen Lucent Technologies postal: Schagen 33 3461 GL Linschoten Netherlands EMail: bwijnen@lucent.com phone: +31 348-680-485 " DESCRIPTION "The SNMP Management Architecture MIB Copyright (C) The Internet Society (2002). This version of this MIB module is part of RFC 3411; see the RFC itself for full legal notices. " REVISION "200210140000Z" -- 14 October 2002 DESCRIPTION "Changes in this revision: - Updated various administrative information. - Corrected some typos. - Corrected typo in description of SnmpEngineID that led to range overlap for 127. - Changed '255a' to '255t' in definition of SnmpAdminString to align with current SMI. - Reworded 'reserved' for value zero in DESCRIPTION of SnmpSecurityModel. - The algorithm for allocating security models should give 256 per enterprise block, rather than 255. - The example engine ID of 'abcd' is not legal. Replaced with '800002b804616263'H based on example enterprise 696, string 'abc'. - Added clarification that engineID should persist across re-initializations. This revision published as RFC 3411. " REVISION "199901190000Z" -- 19 January 1999 DESCRIPTION "Updated editors' addresses, fixed typos. Published as RFC 2571. " REVISION "199711200000Z" -- 20 November 1997 DESCRIPTION "The initial version, published in RFC 2271. " ::= { snmpModules 10 } -- Textual Conventions used in the SNMP Management Architecture ***SnmpEngineID ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "An SNMP engine's administratively-unique identifier. Objects of this type are for identification, not for addressing, even though it is possible that an address may have been used in the generation of a specific value. The value for this object may not be all zeros or all 'ff'H or the empty (zero length) string. The initial value for this object may be configured via an operator console entry or via an algorithmic function. In the latter case, the following example algorithm is recommended. In cases where there are multiple engines on the same system, the use of this algorithm is NOT appropriate, as it would result in all of those engines ending up with the same ID value. 1) The very first bit is used to indicate how the rest of the data is composed. 0 - as defined by enterprise using former methods that existed before SNMPv3. See item 2 below. 1 - as defined by this architecture, see item 3 below. Note that this allows existing uses of the engineID (also known as AgentID [RFC1910]) to co-exist with any new uses. 2) The snmpEngineID has a length of 12 octets. The first four octets are set to the binary equivalent of the agent's SNMP management private enterprise number as assigned by the Internet Assigned Numbers Authority (IANA). For example, if Acme Networks has been assigned { enterprises 696 }, the first four octets would be assigned '000002b8'H. The remaining eight octets are determined via one or more enterprise-specific methods. Such methods must be designed so as to maximize the possibility that the value of this object will be unique in the agent's administrative domain. For example, it may be the IP address of the SNMP entity, or the MAC address of one of the interfaces, with each address suitably padded with random octets. If multiple methods are defined, then it is recommended that the first octet indicate the method being used and the remaining octets be a function of the method. 3) The length of the octet string varies. The first four octets are set to the binary equivalent of the agent's SNMP management private enterprise number as assigned by the Internet Assigned Numbers Authority (IANA). For example, if Acme Networks has been assigned { enterprises 696 }, the first four octets would be assigned '000002b8'H. The very first bit is set to 1. For example, the above value for Acme Networks now changes to be '800002b8'H. The fifth octet indicates how the rest (6th and following octets) are formatted. The values for the fifth octet are: 0 - reserved, unused. 1 - IPv4 address (4 octets) lowest non-special IP address 2 - IPv6 address (16 octets) lowest non-special IP address 3 - MAC address (6 octets) lowest IEEE MAC address, canonical order 4 - Text, administratively assigned Maximum remaining length 27 5 - Octets, administratively assigned Maximum remaining length 27 6-127 - reserved, unused 128-255 - as defined by the enterprise Maximum remaining length 27 " SYNTAX OCTET STRING (SIZE(5..32))SnmpSecurityModel ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "An identifier that uniquely identifies a Security Model of the Security Subsystem within this SNMP Management Architecture. The values for securityModel are allocated as follows: - The zero value does not identify any particular security model. - Values between 1 and 255, inclusive, are reserved for standards-track Security Models and are managed by the Internet Assigned Numbers Authority (IANA). - Values greater than 255 are allocated to enterprise-specific Security Models. An enterprise-specific securityModel value is defined to be: enterpriseID * 256 + security model within enterprise For example, the fourth Security Model defined by the enterprise whose enterpriseID is 1 would be 259. This scheme for allocation of securityModel values allows for a maximum of 255 standards- based Security Models, and for a maximum of 256 Security Models per enterprise. It is believed that the assignment of new securityModel values will be rare in practice because the larger the number of simultaneously utilized Security Models, the larger the chance that interoperability will suffer. Consequently, it is believed that such a range will be sufficient. In the unlikely event that the standards committee finds this number to be insufficient over time, an enterprise number can be allocated to obtain an additional 256 possible values. Note that the most significant bit must be zero; hence, there are 23 bits allocated for various organizations to design and define non-standard securityModels. This limits the ability to define new proprietary implementations of Security Models to the first 8,388,608 enterprises. It is worthwhile to note that, in its encoded form, the securityModel value will normally require only a single byte since, in practice, the leftmost bits will be zero for most messages and sign extension is suppressed by the encoding rules. As of this writing, there are several values of securityModel defined for use with SNMP or reserved for use with supporting MIB objects. They are as follows: 0 reserved for 'any' 1 reserved for SNMPv1 2 reserved for SNMPv2c 3 User-Based Security Model (USM) " SYNTAX INTEGER(0 .. 2147483647)SnmpMessageProcessingModel ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "An identifier that uniquely identifies a Message Processing Model of the Message Processing
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -