📄 sb.c
字号:
long rate; /* Sampling rate, Hz */
int stereo; /* 1 = stereo, 0 = mono */
int bufsiz; /* Size of mbufs to be generated (1/2 DMA buffer) */
{
if(Sb.base == 0){
printf("No SB16 card attached\n");
return -1;
}
if(Sb.state != IDLE){
printf("SB16 not idle\n");
return -1;
}
/* Allocate DMA buffer */
if((Sb.ioptr = Sb.dmabuf = dma_malloc(&Sb.selector,2*bufsiz,1)) == NULL){
printf("Can't alloc dma buffer\n");
return -1;
}
Sb.state = ADC;
Sb.dmasize = 2*bufsiz;
setup_dma(Sb.dma16,Sb.dmabuf,Sb.dmasize,0x54);
/* Set sampling rate */
sb_write_byte(Sb.base,0x42);
sb_write_word_be(Sb.base,rate);
sb_write_byte(Sb.base,0xbe); /* 16-bit input, auto-init, fifo on */
if(stereo)
sb_write_byte(Sb.base,0x30); /* stereo, signed */
else
sb_write_byte(Sb.base,0x10); /* mono, signed */
/* Write number of 16-bit words in half buffer, minus 1 */
sb_write_word_le(Sb.base,Sb.dmasize/4-1);
return 0;
}
/* Enter DAC mode */
int
sb_dac(rate,stereo,bufsiz)
long rate; /* Sampling rate, Hz */
int stereo; /* 1 = stereo, 0 = mono */
int bufsiz; /* Size of buffer unit (1/2 DMA buffer) */
{
if(Sb.base == 0){
printf("No SB16 card attached\n");
return -1;
}
if(Sb.state != IDLE){
printf("SB16 not idle\n");
return -1;
}
/* Allocate DMA buffer */
if((Sb.ioptr = Sb.dmabuf = dma_malloc(&Sb.selector,2*bufsiz,1)) == 0){
printf("Can't alloc dma buffer\n");
return -1;
}
Sb.state = DAC;
Sb.dmasize = 2*bufsiz;
Sb.stuffsamples = 0;
Sb.bufcnt = 0;
{
char *buf;
buf = malloc(Sb.dmasize);
memset(buf,0,Sb.dmasize);
dosmemput(buf,Sb.dmasize,Sb.dmabuf);
free(buf);
}
sb_write_byte(Sb.base,0xd1); /* spkr on */
setup_dma(Sb.dma16,Sb.dmabuf,Sb.dmasize,0x58);
/* Set up sampling rate */
sb_write_byte(Sb.base,0x41);
sb_write_word_be(Sb.base,rate);
sb_write_byte(Sb.base,0xb6); /* 16-bit output, auto-init, fifo on */
if(stereo)
sb_write_byte(Sb.base,0x30); /* stereo, signed */
else
sb_write_byte(Sb.base,0x10); /* mono, signed */
/* Number of 16-bit words in a half-buffer, minus 1 */
sb_write_word_le(Sb.base,Sb.dmasize/4-1);
Sb.pause = 1;
sb_write_byte(Sb.base,0xd5); /* Pause until we get data */
return 0;
}
/* Return soundblaster to idle condition */
int
sb_idle(void)
{
int cnt;
switch(Sb.state){
case IDLE:
return 0; /* Already idle */
case DAC:
/* Wait for output queue to drain to below one buffer */
disable();
while(Sb.bufcnt >= Sb.dmasize/2)
kwait(&Sb);
/* If an incomplete buffer remains, pad it out */
cnt = Sb.bufcnt;
enable();
if(cnt > 0){
struct mbuf *bp;
bp = ambufw(Sb.dmasize/2 - cnt);
bp->cnt = Sb.dmasize/2 - cnt;
memset(bp->data,0,bp->cnt);
sb_send(&bp);
}
disable();
while(!Sb.pause)
kwait(&Sb);
enable();
case ADC: /* note fall-thru */
/* stop conversion */
sb_write_byte(Sb.base,0xd9);
break;
}
Sb.bufcnt = 0;
Sb.state = IDLE;
kwait(NULL);
/* Ought to wait for last interrupt here */
dma_disable(Sb.dma16);
__dpmi_free_dos_memory(Sb.selector);
Sb.dmabuf = 0;
return 0;
}
/* Send buffer to the DAC, starting it if it was paused, and blocking as
* needed
*/
int
sb_send(struct mbuf **bpp)
{
int cnt;
if(bpp == NULL || Sb.state != DAC)
return -1;
while(*bpp != NULL){
/* Wait for space to open up in DMA buffer */
disable();
while(Sb.bufcnt >= Sb.dmasize)
kwait(&Sb);
cnt = Sb.dmasize-Sb.bufcnt;
enable();
/* In this round, we transfer the lesser of:
* -the available space in the DMA buffer
* -the data remaining in this packet
* -the free space in the high end of the DMA buffer
*/
cnt = min(cnt,(*bpp)->cnt);
cnt = min(cnt,Sb.dmabuf+Sb.dmasize-Sb.ioptr);
if(cnt == 0)
break; /* Nothing more to do */
dosmemput((*bpp)->data,cnt,Sb.ioptr);
disable();
Sb.bufcnt += cnt; /* Add to bytes in buffer */
/* Resume output if there's now at least one full buffer */
if(Sb.pause && Sb.bufcnt >= Sb.dmasize/2){
Sb.pause = 0;
sb_write_byte(Sb.base,0xd6);
}
enable();
(*bpp)->data += cnt;
(*bpp)->cnt -= cnt;
if((*bpp)->cnt == 0)
free_mbuf(bpp);
/* Increment pointer, wrap around if necessary */
Sb.ioptr += cnt;
if(Sb.ioptr >= Sb.dmabuf + Sb.dmasize)
Sb.ioptr -= Sb.dmasize;
}
return 0;
}
/* Read a buffer from the A/D, blocking if necessary */
struct mbuf *
sb_recv(void)
{
struct mbuf *bp;
int i;
if(Sb.state != ADC)
return NULL; /* Not in A/D mode */
while((i = Sb.bufcnt) == 0)
kwait(&Sb);
bp = alloc_mbuf(i);
dosmemget(Sb.ioptr,i,bp->data);
bp->cnt = i;
Sb.ioptr += i;
if(Sb.ioptr >= Sb.dmabuf + Sb.dmasize)
Sb.ioptr -= Sb.dmasize;
disable();
Sb.bufcnt -= i;
enable();
return bp;
}
/* Reset Soundblaster card */
static int
sb_reset(int base)
{
unsigned int i;
outportb(base+SB_RESET,1);
for(i=100;i !=0;i--)
;
outportb(base+SB_RESET,0);
for(i=65535;i != 0;i--){
if(sb_read_data(base) == 0xaa)
break;
}
if(i == 0)
return -1;
return 0;
}
/* Wait for read data to become available, then read it. Return -1 on timeout */
static int
sb_read_data(int base)
{
unsigned int i;
for(i=65535;i!=0;i--){
if(inportb(base+SB_RB_STAT) & 0x80)
break;
}
if(i == 0)
return -1; /* Timeout */
return inportb(base+SB_READ_DATA);
}
/* Write data byte to soundblaster when it's ready. return 0 normally, -1 on err */
static int
sb_write_byte(int base, int data)
{
int i;
for(i=65535;i!=0;i--){
if((inportb(base+SB_WB_STAT) & 0x80) == 0)
break;
}
if(i == 0)
return -1;
outportb(base+SB_WB,data);
return 0;
}
/* Write 16-bit word in big-endian order */
static int
sb_write_word_be(int base,int data)
{
sb_write_byte(base,data >> 8);
sb_write_byte(base,data);
return 0;
}
/* Write 16-bit word in little-endian order */
static int
sb_write_word_le(int base,int data)
{
sb_write_byte(base,data);
sb_write_byte(base,data >> 8);
return 0;
}
/* Read the mixer */
static int
sb_read_mix(int base,int reg)
{
outportb(base+SB_MIX_INDEX,reg);
return inportb(base+SB_MIX_DATA);
}
/* Write data to soundblaster when it's ready. return 0 normally, -1 on err */
static int
sb_write_mix(int base,int reg,int data)
{
outportb(base+SB_MIX_INDEX,reg);
outportb(base+SB_MIX_DATA,data);
return 0;
}
dosbcal(argc,argv,p)
int argc;
char *argv[];
void *p;
{
long rate;
rate = atol(argv[1]);
sb_calibrate(rate);
return 0;
}
/* Find DC offsets of each channel */
sb_calibrate(long rate)
{
long leftavg,rightavg;
uint8 omixl,omixr;
long samples;
struct mbuf *bp;
uint left,right;
/* Save previous mixer state,
* then turn everything off
*/
omixl = sb_read_mix(Sb.base,SB_INMIXL);
omixr = sb_read_mix(Sb.base,SB_INMIXR);
sb_write_mix(Sb.base,SB_INMIXL,0); /* All inputs off */
sb_write_mix(Sb.base,SB_INMIXR,0);
/* Collect and analyze some data */
sb_adc(rate,1,TXBUF);
leftavg = rightavg = 0;
samples = 0;
bp = sb_recv();
while(bp != NULL){
left = pull16le(&bp);
right = pull16le(&bp);
leftavg += left;
rightavg += right;
samples++;
}
sb_idle();
/* Restore previous mixer switches */
sb_write_mix(Sb.base,SB_INMIXL,omixl);
sb_write_mix(Sb.base,SB_INMIXR,omixr);
leftavg /= samples;
rightavg /= samples;
printf("Left channel avg: %ld Right channel avg: %ld\n",
leftavg,rightavg);
return 0;
}
unsigned short
pull16le(struct mbuf **bpp)
{
uint x;
x = pull16(bpp);
return (x >> 8) | (x << 8);
}
/* Soundblaster interrupt handler */
void
sbhandle(int dev)
{
int i;
Sb.interrupts++;
i = sb_read_mix(Sb.base,0x82);
if(i & 1) /* 8-bit transfers not used, reset anyway */
(void)inportb(Sb.base+0xe);
if(i & 2)
(void)inportb(Sb.base+0xf);
else
return;
switch(Sb.state){
case IDLE:
break;
case ADC:
if(Sb.bufcnt != Sb.dmasize)
Sb.bufcnt += Sb.dmasize/2;
ksignal(&Sb,1);
break;
case DAC:
Sb.bufcnt -= Sb.dmasize/2; /* Amount sent */
if(Sb.bufcnt < Sb.dmasize/2){
/* buffer not ready, pause */
Sb.pause = 1;
sb_write_byte(Sb.base,0xd5);
}
ksignal(&Sb,1);
break;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -