📄 lwr.cpp
字号:
/*
This file is part of Orange.
Orange is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
Orange is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Orange; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Authors: Janez Demsar, Blaz Zupan, 1996--2002
Contact: janez.demsar@fri.uni-lj.si
*/
#include "distance.hpp"
#include "nearest.hpp"
#include "examplegen.hpp"
#include "table.hpp"
#include "lwr.ppp"
TLWRLearner::TLWRLearner()
: k(10.0),
rankWeight(false)
{}
TLWRLearner::TLWRLearner(PExamplesDistanceConstructor fnc, PLinRegLearner lrl, const float &ak, bool rw)
: distanceConstructor(fnc),
linRegLearner(lrl),
k(ak),
rankWeight(rw)
{}
PClassifier TLWRLearner::operator()(PExampleGenerator gen, const int &weightID)
{
checkProperty(linRegLearner);
PFindNearest findNearest = TFindNearestConstructor_BruteForce(distanceConstructor ? distanceConstructor : mlnew TExamplesDistanceConstructor_Euclidean(), true)
(gen, weightID, getMetaID());
return mlnew TLWRClassifier(gen->domain, findNearest, linRegLearner, k, rankWeight, weightID);
}
TLWRClassifier::TLWRClassifier()
: k(10.0)
{}
TLWRClassifier::TLWRClassifier(PDomain dom, PFindNearest fn, PLinRegLearner lrl, const float &ak, bool ur, const int &wid)
: TClassifierFD(dom),
findNearest(fn),
linRegLearner(lrl),
k(ak),
rankWeight(ur),
weightID(wid)
{}
TValue TLWRClassifier::operator()(const TExample &ex)
{
checkProperty(findNearest);
checkProperty(linRegLearner);
TExample exam(domain, ex);
PExampleGenerator neighbours = findNearest->call(exam, k);
if (neighbours->numberOfExamples()==1)
return (*neighbours->begin()).getClass();
const int &distanceID = findNearest->distanceID;
if (rankWeight) {
const float &sigma2 = k*k / -log(0.001);
int rank2 = 1, rankp=1; // rank2 is rank^2, rankp = rank^2 - (rank-1)^2; and, voila, we don't need rank :)
PEITERATE(ei, neighbours)
(*ei).setMeta(distanceID, TValue(float(WEIGHT(*ei) * exp(-(rank2 += (rankp+=2))/sigma2))));
}
else {
TExample *last;
TExampleTable *neighble = neighbours.AS(TExampleTable);
if (neighble)
last = &neighble->back();
else {
// This is not really elegant, but there's no other way to get the last example...
const TExample *last = NULL;
{ PEITERATE(ei, neighbours)
last = &*ei;
}
}
float lastwei = WEIGHT2(*last, distanceID);
const float &sigma2 = lastwei*lastwei / -log(0.001);
PEITERATE(ei, neighbours) {
const float &wei = WEIGHT2(*ei, distanceID);
(*ei).setMeta(distanceID, TValue(float(WEIGHT(*ei) * exp(-wei*wei/sigma2))));
}
}
return linRegLearner->call(neighbours, distanceID)->call(exam);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -